| count to and across
100, forwards and
backwards,
beginning with 0 or
1, or from any given
number | count, read and write numbers to 100 in numerals; count in multiples of twos, fives and tens | given a number,
identify one more
and one less | identify and represent
numbers using objects and
pictorial
representations
including the
number
line, and use the language
of: equal to, more than, less
than (fewer), most, least | read and write
numbers from
1 to 20 in numerals
and words. | read, write and interpret
mathematical statements
involving
addition (+),
subtraction (–) and
equals (=) signs | represent and use
number bonds and
related subtraction
facts within 20 | |--|--|--|--|---|--|--| | add and subtract
one-digit and
two-digit numbers
to 20, including
zero numbers | solve one-step problems that involve addition and subtraction, using concrete objects and pictorial representations, and missing number problems such as 7 = □ - 9 | | tage | | solve one-step problems involving multiplication and division, by calculating the answer using concrete objects, pictorial representations and arrays with the support of the teacher. | equal parts of an object, shape or quantity compare, describe and solve practical problems for: - lengths and heights (for example, | | recognise, find and name a
quarter as 1 of 4
equal parts of an
object, shape
or |] | Mat | hem | atic | S | long/short, longer/shorter, tall/short
double/half] - mass/weight [for example,
heavy/light, heavier than,
lighter than] - capacity and volume [for example,
full/empty, more than, less than, | | measure and begin to record the following: - lengths and heights - mass/weight - capacity and 'volume - time (hours, minutes, seconds) | recognise and know the value of different denominations of coins and notes | sequence events in chronological order using language [for example, before and after, next, first, today, yesterday, tomorrow, morning, afternoon and evening] | recognise and use
language relating to dates,
including days
of the week,
weeks, months
and years | tell the time to the hour and half past the hour and draw the hands on a clock face to show these times | recognise and name common 2-D and 3-D shapes [for example rectangles (including squares), circles and triangles] - 3-D shapes [for example, cuboids (including cubes), pyramids and spheres] | describe position, direction and movement, including whole, half, quarter and three-quarter turns | | count in steps of 2,
3, and 5 from 0, and
in tens from any
number, forward
and backward | recognise the place value of each digit in a two-digit number (tens, ones) | identify, represent and
estimate numbers using
different
representations,
including the number
line | compare and order
numbers from 0
up to 100;
use <, > and = signs | read and write
numbers to at least
100 in numerals
and in words | use place value
and number facts
to solve problems | solve problems with addition
and subtraction: - using concrete objects and
pictorial representations,
including those
involving numbers,
quantities and measures
- applying their increasing
knowledge of mental and | |---|--|--|---|---|---|---| | recall and use
addition and
subtraction facts to
20 fluently, and
derive and use
related facts up to
100 | add and subtract using concrete objects, pictorial representations, and mentally, including: - a two-digit number and ones - a two-digit numbers and tens - two two-digit numbers - adding three one-digit numbers | show that addition of two
numbers can be done in any
order (commutative) and
subtraction of one number
from another cannot | recognise and use the inverse relationship between addition and subtraction and use this to check calculations and solve missing number problems. | recall and use multiplication
and division facts for
the 2, 5 and 10
multiplication tables,
including recognising odd
and even numbers | calculate mathematical statements for multiplication and division within the multiplication tables and write them using the multiplication (x), division (÷) and equals (=) signs | order (commutative) and | | Solve involving multiplication and division, using materials, arrays, repeated addition, mental methods, and multiplication and division facts, including problems in contexts | recognise, find, name and write fractions 1/3, 1/4, 2/4 and 3/4 | St | age | 2 | | write simple fractions for example, 1/2 of 6 = 3 and recognise the equivalence of 2/4 and 1/2 | | appropriate standard units to estimate and measure length/height in any direction (m/cm); mass (kg/g); temperature (°C); capacity (litres/ml) to the nearest appropriate unit, using rulers, scales, thermometers and measuring vessels | | M | lath | ema' | tics | compare and order
lengths, mass,
volume/capacity
and record
the results using
>, < and = | | recognise and use
symbols for pounds
(£) and pence (p);
combine amounts to
make a particular
value | find different
combinations of coins that
equal the same amounts
of money | solve simple problems in a practical context involving addition and subtraction of money of the same unit, including giving change | compare and sequence intervals of time | tell and write the time to
five minutes, including
quarter past/to
the hour and
draw the hands
on a clock face to show
these times | know the number of minutes in an hour and the number of hours in a day. | identify and describe the
properties of
2-D shapes,
including the
number of sides
and line symmetry in a
vertical line | | identify and describe
the properties of
3-D shapes, including
the number of edges,
vertices and faces | identify 2-D shapes on the
surface of 3-D shapes,
[for example, a circle
on a cylinder and a
triangle on a pyramid] | compare and sort
common 2-D and 3-D
shapes and everyday
objects | use mathematical vocabulary to describe position, direction and movement, including movement in a straight line and distinguishing between rotation as a turn and in terms of right angles for quarter, half and three-quarter turns (clockwise and anti-clockwise) | interpret and construct simple pictograms, tally charts, block diagrams and simple tables | ask and answer simple questions by counting the number of objects in each category and sorting the categories by quantity | ask and answer
questions about
totalling and
comparing
categorical data | | count from 0 in multiples of 4, 8, 50 and 100; find 10 or 100 more or less than a given number | recognise the place
value of each digit
in a three-digit
number
(hundreds, tens, ones) | compare and order
numbers up
to 1000 | identify, represent
and estimate
numbers using
different
representations | read and write
numbers up to
1000 in numerals
and in words | solve number
problems and
practical problems
involving these ideas | add and subtract numbers mentally, including: - a three-digit number and ones - a three-digit number and tens - a three-digit number and hundreds | |---
---|---|--|---|---|--| | add and subtract
numbers with up to
three digits, using
formal written
methods of columnar
addition and
subtraction | estimate the answer to
a calculation and
use inverse
operations to check
answers | solve problems, including missing number problems, using number facts, place value, and more complex addition and subtraction | recall and use
multiplication and
division facts
for the 3, 4 and 8
multiplication tables | write and calculate mathematical statements for multiplication and division using the multiplication tables that they know, including for two-digit numbers, using mental and progressing to formal written methods | solve including missing number problems, involving multiplication and division, including positive integer scaling problems and correspondence problems in which n objects are connected to m objects | count up and down in tenths; recognise that tenths arise from dividing an object into 10 equal parts and in dividing one-digit numbers or quantities by 10 | | recognise, find and write fractions of a discrete set of objects: unit fractions and non-unit fractions with small denominators | | | tage | | 5 | recognise and use
fractions as numbers:
unit fractions and
non-unit
fractions with
small denominators | | recognise and show,
using diagrams,
equivalent fractions
with small
denominators | | Matl | hem | atics | | add and subtract fractions with the same denominator within one whole [for example, 5/7 + 1/7 = 6/7] | | compare and order
unit fractions, and
fractions with the
same denominators | measure, compare, add
and subtract: lengths (m/
cm/mm); mass (kg/g);
volume/capacity (l/ml) | measure the perimeter of simple 2-D shapes | add and subtract
amounts of money to
give change, using
both £ and p in
practical contexts | tell and write the time
from an analogue clock,
including using
Roman numerals
from I to XII,
and 12-hour and 24-hour
clocks | estimate and read time with increasing accuracy to the nearest minute; record and compare time in terms of seconds, minutes and hours; use vocabulary such as o'clock, .m./p.m., morning, afternoor noon and midnight | know the number of seconds in a minute and the number of days in each month, year | | compare durations of
events [for example to
calculate the time taken
by particular events or
tasks] | draw 2-D shapes and make 3-D shapes using modelling materials; recognise 3-D shapes in different orientations and describe them | recognise angles as a
property of shape or a
description of a turn | identify right angles, recognise that two right angles make a half-turn, three make three quarters of a turn and four a complete turn; identify whether angles are greater than or less than right angle | | interpret and
present data using
bar charts,
pictograms and
tables | solve one-step and two-step questions [for example, 'How many more?' and 'How many fewer?'] using information presented in scaled bar charts and pictograms and tables | | count in multiples
of 6, 7, 9, 25
and 1000 | find 1000 more or
less than a given
number | count backwards
through zero
to include
negative numbers | recognise the place
value of each digit
in a four-digit
number
(thousands, hundreds,
tens, and ones) | order and
compare numbers
beyond 1000 | identify, represent and
estimate numbers
using different
representations | round any number
to the nearest
10, 100 or 1000 | solve number and practical problems that involve all of the above and with increasingly large positive numbers | read Roman numerals to
100 (I to C) and know
that over time, the
numeral system changed
to include the concept of
zero and place value | |--|---|---|---|---|--|---|--|--| | add and subtract
numbers with up to 4
digits using the
formal written
methods of columnar
addition and subtraction
where appropriate | estimate and use inverse operations to check answers to a calculation | solve addition and
subtraction two-step
problems in contexts,
deciding which operations
and methods to use and
why | | use place value, known and
derived facts to multiply
ind divide mentally, includin
multiplying by 0 and 1;
dividing by 1; multiplying
together three numbers | recognise and use
factor pairs and
commutativity
in mental calculations | multiply two-digit and
three-digit numbers by a
one-digit number using
formal written layout | solve problems involving multiplying and adding, including using the distributive law to multiply two digit num by one digit, integer scaling problems and harder correspondence problems such as n objects are connected to m objects | recognise and show,
using diagrams,
families of | | count up and down in
hundredths; recognise
that hundredths
arise when
dividing an object by one
hundred and dividing
tenths by ten | solve problems involving increasingly harder fractions to calculate quantities, and fractions to divide quantities, including non-unit fractions where the answer is a whole number | C | St | tage | 4 | C | add and subtract
fractions with the
same denominator | recognise and write
decimal equivalents
of any number
of tenths or
hundredths | | recognise and write decimal equivalents to ¼, ½, ¾ | , | N | /lath | nem | atic | S | | find the effect of dividing
a one- or two-digit number
by 10 and 100,
identifying the
value of the digits
in the answer as ones,
tenths and hundredths | | round decimals with
one decimal place
to the nearest
whole number | compare numbers with
the same number of
decimal places up to two
decimal places | solve simple measure
and money problems
involving
fractions and
decimals
to two decimal places. | different units of measure
[for example, kilometre to
metre; hour to minute] | rectilinear | find the area of
ectilinear shapes by countir
squares | estimate, compare and calculate different measures, including money in pounds and pence | read, write and convert
time between analogue
and digital 12- and
24-hour clocks | solve problems involving
converting from
hours to minutes;
minutes to
seconds; years to months;
weeks to days | | compare and classify
geometric shapes,
including quadrilaterals
and triangles, based on
their properties and sizes | identify acute and obtuse angles and compare and order angles up to two right angles by size | identify lines of
symmetry in
2-D shapes
presented in different
orientations | complete a simple
symmetric figure
with respect to a
specific line of symmetry | describe positions on a 2-D grid as coordinates in the first quadrant | describe movements
between positions as
translations of a
given unit to the
left/right and up/down | plot specified points
and draw sides
to complete a
given polygon | interpret and present discrete and continuous data using appropriate graphical methods, including bar charts and time graphs | solve comparison, sum
and difference problems
using information
presented in bar
charts, pictograms, tables
and other graphs | | read, write, order
and compare
numbers to at
least 1 000 000
and determine the
value of each digit | count forwards or
backwards in steps
of powers of 10
for any given
number up to
1 000 000 | interpret
negative
numbers in context, count
forwards and
backwards with
positive and negative
whole numbers, including
through zero | round any number up to
1 000 000 to
the nearest
10, 100, 1000,
10 000 and 100 000 | solve number problems
and practical
problems that
involve all
of the above | read Roman numerals to
1000 (M) and
recognise years
written in Roman
numerals | add and subtract whole
numbers with more than
4 digits, including
using formal
written methods
(columnar addition
and subtraction) | add and subtract
numbers mentally
with increasingly
large numbers | use rounding to check
answers to
calculations and
determine, in the context
of a problem, levels of
accuracy | |---|--|--|---|---|--|--|--|---| | solve addition and
subtraction multi-step
problems in
contexts,
deciding which operations
and methods to use and
why | identify multiples and
factors, including finding
all factor
pairs of a number,
and common factors
of 2 numbers | know and use the
vocabulary of prime
numbers, prime factors
and composite (non-
prime) numbers | establish whether a
number up to
100 is prime
and recall prime numbers
up to 19 | multiply numbers up to
4 digits by a one- or
two-digit number using a
formal written method,
ncluding long multiplicatio
for two-digit numbers | multiply and divide
numbers
mentally,
drawing upon known facts | divide numbers up to 4
digits by a one-digit
number using the formal
written method of short
division and interpret
remainders appropriately
for the context | multiply and divide whole
numbers
and those
involving decimals by 10,
100 and 1,000 | numbers,
and the | | including daing | solve problems involving
addition, subtraction,
multiplication and division
and a combination of these
including understanding the
meaning of the equals sign | scaling by simple fractions | Stag | e 5 | compare and order
fractions whose
denominators are all
multiples of the same
number | identify, name and write equivalent fractions of a given fraction, represented visually, including tenths and hundredths | recognise mixed numbers and improper fractions and convert from one form to the other and write mathematical statements >1 as a mixed number[eg $^2/_5$ + $^4/_5$ = $^6/_5$ = $^12/_5$] | and denominators | | multiply proper
fractions and mixed
numbers
by whole
numbers, supported by
materials and diagrams | read and write decimal
numbers as
fractions
[for example,
0.71 =71/100] | recognise and use
thousandths and relate
them to tenths,
hundredths and decimal
equivalents | Mat | hem | atics | round decimals with
two decimal places to
the nearest whole
number and to one
decimal place | read, write, order
and compare
numbers with
up to three decimal place | solve problems
involving number
up to three
decimal places | | recognise the per cent symbol (%) and understand that per cent relates to 'number of parts per hundred', and write percentages as a fraction with denominator 100, and as a decimal | which require | centimetre and metre; centimetre | understand and use approximate equivalences between metric units and common imperial units such as inches, pounds and pints | measure and calculate the perimeter of composite rectilinear shapes in centimetres and metres | using standard units, squa
centimetres (cm²) and | estimate volume [for example, using 1 cm³ blocks to build cuboids (including cubes)] and capacity [for example, using water] | solve problems involving converting between units of time | | | identify 3-D shapes,
including cubes and other
cuboids, from 2-D
representations | know angles are
measured in degrees:
estimate and
compare acute,
obtuse and reflex angles | draw given angles, and
measure them in
degrees (°) | identify: - angles at a point and one whole turn (total 360°) - angles at a point on a straight line and ½ a turn (total 180°) - other multiples of 90° | rectangles to deduce | distinguish between
regular and irregular
polygons based
on reasoning about
equal sides and angles | identify, describe and represent the position of a shape following a reflection or translation, using the appropriate language, and know that the shape has not changed | and difference
problems using
information | complete, read and interpret information in tables, including timetables | | read, write, order and compare round any whole | e use negative numbers solve number proble | divide numbers up to digits by a two-digit woultiply multi-digit number using the form numbers up to 4 digits by | whole digits by a two-digit rmal number using the formal perform mental | identify common factors, | |--|--|--|---|---| | numbers up to 10 000 000 and determine the value of each digit number to a required degree of accuracy | in context, and and practical problems that | a two-digit whole division, and interpret remainders as whole power formal written method of number remainders, | of short including with mixed operations | common multiples and prime numbers | | | +75+75 | appropriate for the co | context the context | | | use their knowledge of
the order of
operations to carry | | tions use common factors to simplify fractions; use fractions. | add and subtract fractions multiply simple pa
rder with different proper fraction
denominators and writing the answ | ns, whole | | out calculations involving the four operations or carry out calculations involving the four operations are methods to use and methods to use and other carry of the t | ng multiplication and division in the context of a problem, and appropriate degree | express fractions in the same denomination including fractions >1 | mixed numbers, n its | numbers [for example, $\frac{1}{3} \div 2 = \frac{1}{6}$] | | S | accuracy. | | | solve problems involving | | associate a fraction with
division and calculate
decimal fraction digit in
numbers give
three decimal places | ven to multiply one-digit numbers with | use written divisio
methods in cases
where the | es which require answers to be simple fractions, | veen quantities where | | equivalents [for example, 0.375] for a simple fraction [for example, $\frac{3}{8}$] multiply and divid numbers by 10, 100 1000 giving answers of decimal pi | 0 and decimal places | answer has up to two decimal pl | rounded to decimals and percentages includir different contexts | ing in using integer | | solve problems involving solve problems involving | olving solve problems | eth emotice | | | | the calculation of percentages [for example, of measures, and such as 15% of the scale factor is known or can be found. | be using knowledge of | athematics | use simple formulae generate and describe linea number sequence | ar number problems | | 360] and use percentages
for comparison | fractions and multiples | | | | | find pairs of numbers that | solve problems involving the calculation and convert standard units, convert measurements of lengt | veen veting recognise that share | anes recognise when it is | calculate, estimate and compare volume of cubes and cuboids using standard | | satisfy number sentences involving enumerate possibiliti combinations of two variables | itles of | miles and kilometres with the same are can have differen | reas possible to use calculate the area parallelograms are triangles | centimetres (cm³)
and cubic metres (m³), | | two unknowns | places where appropriate versa, using decimal notation to up to decimal places | 03 | of shapes | and extending to other
units [eg, mm ³
and km ³] | | draw 2-D shapes using recognise, describe build simple | | recognise angles where
they meet at a point,
are on a straight describe positio
on the full | simple shapes on pie charts and | | | given dimensions and angles 3-D shapes including making r | sizes and find circumference | line, or are vertically opposite, and (all four quadran | plane and reflect and use these | as an average iii | | | | | | | | Luca the acceptance | | | |---|--|--|--|--|--|--|--|--| | order positive and
negative integers,
decimals and
fractions | use the symbols
=, ≠, <,
>, ≤, ≥ | apply the four operations, including formal written methods, to integers, decimals and simple fractions (proper and improper), and mixed numbers | understand and use
place value (e.g. when
working with very
large or very
small numbers,
and when calculating
with decimals) | recognise and use relationships between operations, including inverse operations (e.g. cancellation to simplify calculations and expressions | use conventional notation for priority of operations, including brackets | use the concepts and vocabulary of prime numbers, factors (divisors), multiples, common factors, common multiples, highest common factor and lowest common multiples | use positive integer powers and associated real roots (square, cube and higher), recognise powers of 2, 3, 4, 5 | use standard units of mass, length, time, money and other measures (including standard compound measures) using decimal quantities where appropriate | | use their knowledge of
the order of
operations to carry
out calculations
involving the four
operations | estimate answers; check calculations using approximation and estimation, including answers obtained using technology | Round numbers and measures to an appropriate degree of accuracy (e.g. to a specified number of decimal places or significant figures) | use and interpret algebraic notation, including: ab in place of $a \times b$, $3y$ in place of of $y + y + y$ and $3 \times y$, a^2 in place of $a \times a$, a^3 in place of $a \times a \times a$, a^3 in place of $a \times b$, brackets | substitute numerical
into formulae
and
expressions | understand and use the concepts and vocabulary of expressions, equations, formulae and terms | compare and order
fractions,
including
fractions >1 | simplify and
manipulate algebraic
expressions by
collecting like terms
and multiplying a
single term over a
bracket | understand and use standard mathematical formulae | | where appropriate,
interpret simple
expressions as
functions with
inputs and outputs | work with coordinates in all four quadrants | understand and use lines parallel to the axes, y=x and y=-x | solve linear
equations
in one
unknown
algebraically | Stage 7 | generate terms of a
sequence
from a
term-to-term
rule | recognise and use sequences of triangular, square and cube numbers, simple arithmetic progressions | change freely between
related standard
units (e.g. time,
length, area,
volume/capacity, mass) in
numerical contexts | express one quantity as a fraction of another, where the fraction is less than 1 or greater than 1 | | use ratio notation,
including
reduction
to simplest form | divide a given quantity into two parts in a given part:part or part:whole ratio | define percentage as
'number of parts
per hundred' | interpret percentages and percentage changes as a fraction or a decimal, and interpret these multiplicatively | Mathe | matics | express one quantity as a percentage of another | compare two
quantities using
percentages | solve problems involving percentage change, including percentage increase/decrease | | use conventional terms and notations: points, lines, vertices, edges, planes, parallel lines, perpendicular lines, right angles, polygons, regular polygons and polygons with reflection and/or rotation symmetries | use the standard conventions for labelling and referring to the sides and angles of triangles | decimal notation
up to three decimal
places where appropriate | | apply the properties of
angles at a point,
angles at a
point on a
straight line, vertically
opposite angles | derive and apply the properties and definitions of: special types of quadrilaterals, including square, rectangle, parallelogram, trapezium, kite and rhombus; and triangles and other plane figures using appropriate language | identify, describe and construct congruent shapes including on coordinate axes, by considering rotation, reflection and translation | | pyramids, cones
and spheres
interpret, analyse and
compare the distributions of | | use standard units of
measure and related
concepts (length, area,
volume/capacity, mass,
time, money, etc.) | measure line segments
and angles
in geometric
figures | know and apply formulae
to calculate
area of
triangles,
parallelograms,
trapezia | calculate
perimeters
of 2D shapes | know and apply
formulae to
calculate
volume of cuboids | calculate surface
area of cuboids | describe
translations
as 2D vectors | including frequency tables,
bar charts, pie charts and
pictograms for
categorical data,
vertical line charts for
ungrouped discrete
numerical data and know
their appropriate use | data sets from univariate empirical distributions through appropriate measures of central tendency (median, mean, mode and modal class) and spread (range) | | apply the four operations | | use the concepts and | 1 | | | | | | |--|---|--
---|--|--|--|---|--| | | | vocabulary of prime | 1 | | | work interchangeably | | | | including formal written | use conventional | numbers, highest common | 1 | | | with terminating decimals | | | | methods, to integers, | notation for priority | factor, lowest common | l _ | interpret standard form | | and their | identify and work | | | decimals and | of operations, | multiple, prime | calculate exactly | A x 10 ⁿ , where | apply systematic | / | | Interpret fractions and | | simple fractions | | 1 1 | with fractions | $1 \le A < 10$ and n | listing strategies | corresponding | with fractions | percentages as operators | | (proper and improper), | including brackets, | factorisation, | With fractions | is an integer | | fractions (such as | in ratio problems | parasimages as aparation | | | powers, roots and | including using product | 1 | is all lifteger | | 3.5 and 7/2 or | | | | and mixed numbers – all | reciprocals | notation and the unique | 1 | | | 0.375 or 3/8) | | | | both positive and negative | | factorisation theorem | 1 | | | 0.575 01 5707 | | I () I | | | - | | - | - | | | | \longrightarrow \longleftarrow | | | | | | simplify and | | | | | | | | | | manipulate algebraic | | | | l 1 | | round numbers and | use and interpret algebraic | | l | expressions by taking out | | | identify and interpret | recognise, sketch and | | measures to an | notation, including: | substitute numerical | understand and | | rearrange | plot graphs of equations | gradients and | interpret graphs | | appropriate degree | a^2b in place of | values into scientific | use the | common factors and | formulae | that correspond to | intercepts of | of linear | | | a×a×b, | | concepts and | simplifying expressions | to change | straight-line graphs in the | | A / | | of accuracy (e.g. to a | coefficients written as | formulae | vocabulary of factors | involving sums, products | _ | coordinate plane | linear functions | functions and simple | | specified number of | | 1 | vocabulary of factors | and powers, including the | the subject | coordinate plane | graphically and | quadratic functions | | decimal places or | fractions rather than as | | I | laws of indices | I | | algebraically | | | significant figures) | decimals | | I | | l | | · · | | | | | | | | | — — | | overess the division of - | | plot and interpret | | | | | | | | express the division of a | | graphs and graphs of non- | | | | | | | | quantity into two parts as a | | | | find approximate | I | deduce expressions | change freely between | _use compound units | | ratio; apply ratio to real | | standard (piece-wise linear) | solve linear equations | | generate terms of a | to calculate | compound units (e.g. | | uso scalo factore coalo | contexts and | | functions in real | with the unknown on both | solutions to | sequence from either a | - \ / V | | such as speed, | use scale factors, scale | problems (such as | | contexts, to find | sides of the equation | linear equations | term-to-term or a | | speed, rates of pay, prices) | rates of pay, | diagrams and maps | those involving conversion, | | approximate solutions to | sides of the equation | using a graph | position-to-term rule | of linear | in numerical contexts | unit pricing) | | comparison, scaling, | | problems such as simple | | | position to term rule | sequences | | | | mixing, concentrations) | | kinematic problems | | | | | | | | mixing, concentrations) | | involving distance and speed | | | | _ | | | | . () . | | | | | | | | | | | | | | t C +~ | | //athor | aticc | | - | | | 75 | | i Sta | age 8 M | lathem | natics | 75 | derive and use the sum of | | | 5 | | j Sta | age 8 N | lathem | latics | J | | identify, describe and | | 3 | | Sta | | lathem | sorre problems involving | Understand and use | angles in a triangle (e.g. to | | | express a multiplicative | understand and use | | compare lengths, | | percentage change, | understand and use | angles in a triangle (e.g. to deduce and use the angle | | | express a multiplicative relationship | understand and use proportion | relate ratios to fractions | compare lengths, areas and | work with percentages | percentage change,
including | alternate and | angles in a triangle (e.g. to
deduce and use the angle
sum in any | construct similar shapes,
including on | | express a multiplicative | understand and use
proportion
as equality | | compare lengths, | | percentage change, | | angles in a triangle (e.g. to
deduce and use the angle
sum in any
polygon, and | construct similar shapes,
including on
coordinate axes, | | express a multiplicative relationship | understand and use proportion | relate ratios to fractions | compare lengths,
areas and
volumes | work with percentages | percentage change,
including | alternate and | angles in a triangle (e.g. to
deduce and use the angle
sum in any | construct similar shapes,
including on
coordinate axes,
by considering | | express a multiplicative relationship between two quantities as a ratio or a | understand and use
proportion
as equality | relate ratios to fractions | compare lengths,
areas and
volumes
using ratio | work with percentages | percentage change,
including
original value
problems, and simple | alternate and corresponding angles on | angles in a triangle (e.g. to
deduce and use the angle
sum in any
polygon, and
to derive properties of | construct similar shapes,
including on
coordinate axes, | | express a multiplicative relationship between two | understand and use
proportion
as equality | relate ratios to fractions | compare lengths,
areas and
volumes | work with percentages | percentage change,
including
original value
problems, and simple
interest including in | alternate and corresponding angles on | angles in a triangle (e.g. to
deduce and use the angle
sum in any
polygon, and | construct similar shapes,
including on
coordinate axes,
by considering | | express a multiplicative relationship between two quantities as a ratio or a | understand and use
proportion
as equality | relate ratios to fractions | compare lengths,
areas and
volumes
using ratio | work with percentages | percentage change,
including
original value
problems, and simple | alternate and corresponding angles on | angles in a triangle (e.g. to
deduce and use the angle
sum in any
polygon, and
to derive properties of | construct similar shapes,
including on
coordinate axes,
by considering | | express a multiplicative relationship between two quantities as a ratio or a | understand and use
proportion
as equality | relate ratios to fractions and to linear functions | compare lengths,
areas and
volumes
using ratio | work with percentages | percentage change,
including
original value
problems, and simple
interest including in | alternate and corresponding angles on | angles in a triangle (e.g. to
deduce and use the angle
sum in any
polygon, and
to derive properties of | construct similar shapes,
including on
coordinate axes,
by considering | | express a multiplicative relationship between two quantities as a ratio or a | understand and use
proportion
as equality | relate ratios to fractions and to linear functions identify and apply circle | compare lengths,
areas and
volumes
using ratio | work with percentages | percentage change,
including
original value
problems, and simple
interest including in | alternate and corresponding angles on | angles in a triangle (e.g. to
deduce and use the angle
sum in any
polygon, and
to derive properties of | construct similar shapes,
including on
coordinate axes,
by considering | | express a multiplicative relationship between two quantities as a ratio or a | understand and use
proportion
as equality | relate ratios to fractions
and to linear functions
identify and apply circle
definitions and properties, | compare lengths,
areas and
volumes
using ratio | work with percentages | percentage change,
including
original value
problems, and simple
interest including in | alternate and corresponding angles on parallel lines | angles in a triangle (e.g. to
deduce and use the angle
sum in any
polygon, and
to derive properties of | construct similar shapes,
including on
coordinate axes,
by considering | | express a multiplicative relationship between two quantities as a ratio or a fraction
| understand and use proportion as equality of ratios | relate ratios to fractions and to linear functions identify and apply circle definitions and properties, including: centre, radius, | compare lengths,
areas and
volumes
using ratio
notation | work with percentages | percentage change,
including
original value
problems, and simple
interest including in | alternate and corresponding angles on | angles in a triangle (e.g. to
deduce and use the angle
sum in any
polygon, and
to derive properties of
regular polygons) | construct similar shapes,
including on
coordinate axes,
by considering
enlargement | | express a multiplicative relationship between two quantities as a ratio or a fraction | understand and use proportion as equality of ratios measure line segments and angles in geometric | relate ratios to fractions and to linear functions identify and apply circle definitions and properties, including: centre, radius, chord, diameter, | compare lengths, areas and volumes using ratio notation | work with percentages greater than 100% | percentage change,
including
original value
problems, and simple
interest including in
financial mathematics | alternate and corresponding angles on parallel lines | angles in a triangle (e.g. to
deduce and use the angle
sum in any
polygon, and
to derive properties of | construct similar shapes,
including on
coordinate axes,
by considering | | express a multiplicative relationship between two quantities as a ratio or a fraction | understand and use proportion as equality of ratios measure line segments and angles in geometric figures, including | relate ratios to fractions and to linear functions identify and apply circle definitions and properties, including: centre, radius, chord, diameter, circumference | compare lengths, areas and volumes using ratio notation calculate perimeters of 2D shapes, | work with percentages greater than 100% calculate areas of circles and | percentage change, including original value problems, and simple interest including in financial mathematics know and apply formulae to calculate | alternate and corresponding angles on parallel lines apply statistics to | angles in a triangle (e.g. to
deduce and use the angle
sum in any
polygon, and
to derive properties of
regular polygons) | construct similar shapes,
including on
coordinate axes,
by considering
enlargement | | express a multiplicative relationship between two quantities as a ratio or a fraction | understand and use proportion as equality of ratios measure line segments and angles in geometric figures, including interpreting maps and | relate ratios to fractions and to linear functions identify and apply circle definitions and properties, including: centre, radius, chord, diameter, circumference know the formulaei | compare lengths, areas and volumes using ratio notation | work with percentages greater than 100% calculate areas of circles and composite | percentage change, including original value problems, and simple interest including in financial mathematics know and apply formulae to calculate volume of right prisms | alternate and corresponding angles on parallel lines apply statistics to describe a | angles in a triangle (e.g. to
deduce and use the angle
sum in any
polygon, and
to derive properties of
regular polygons)
use and interpret
scatter graphs of | construct similar shapes, including on coordinate axes, by considering enlargement | | express a multiplicative relationship between two quantities as a ratio or a fraction | understand and use proportion as equality of ratios measure line segments and angles in geometric figures, including | relate ratios to fractions and to linear functions identify and apply circle definitions and properties, including: centre, radius, chord, diameter, circumference thow the formulae circumference of a circle = | compare lengths, areas and volumes using ratio notation calculate perimeters of 2D shapes, | work with percentages greater than 100% calculate areas of circles and | percentage change, including original value problems, and simple interest including in financial mathematics know and apply formulae to calculate | alternate and corresponding angles on parallel lines apply statistics to | angles in a triangle (e.g. to
deduce and use the angle
sum in any
polygon, and
to derive properties of
regular polygons) | construct similar shapes, including on coordinate axes, by considering enlargement | | express a multiplicative relationship between two quantities as a ratio or a fraction | understand and use proportion as equality of ratios measure line segments and angles in geometric figures, including interpreting maps and | relate ratios to fractions and to linear functions identify and apply circle definitions and properties, including: centre, radius, chord, diameter, circumference know the formulae circumference of a circle = 2πr = πd, area of a circle = | compare lengths, areas and volumes using ratio notation calculate perimeters of 2D shapes, | work with percentages greater than 100% calculate areas of circles and composite | percentage change, including original value problems, and simple interest including in financial mathematics know and apply formulae to calculate volume of right prisms | alternate and corresponding angles on parallel lines apply statistics to describe a | angles in a triangle (e.g. to
deduce and use the angle
sum in any
polygon, and
to derive properties of
regular polygons)
use and interpret
scatter graphs of | construct similar shapes, including on coordinate axes, by considering enlargement | | express a multiplicative relationship between two quantities as a ratio or a fraction | understand and use proportion as equality of ratios measure line segments and angles in geometric figures, including interpreting maps and scale drawings and use of | relate ratios to fractions and to linear functions identify and apply circle definitions and properties, including: centre, radius, chord, diameter, circumference thow the formulae circumference of a circle = | compare lengths, areas and volumes using ratio notation calculate perimeters of 2D shapes, | work with percentages greater than 100% calculate areas of circles and composite | percentage change, including original value problems, and simple interest including in financial mathematics know and apply formulae to calculate volume of right prisms | alternate and corresponding angles on parallel lines apply statistics to describe a | angles in a triangle (e.g. to
deduce and use the angle
sum in any
polygon, and
to derive properties of
regular polygons)
use and interpret
scatter graphs of | construct similar shapes, including on coordinate axes, by considering enlargement | | express a multiplicative relationship between two quantities as a ratio or a fraction | understand and use proportion as equality of ratios measure line segments and angles in geometric figures, including interpreting maps and scale drawings and use of bearings | relate ratios to fractions and to linear functions identify and apply circle definitions and properties, including: centre, radius, chord, diameter, circumference know the formulae circumference of a circle = 2πr = πd, area of a circle = | compare lengths, areas and volumes using ratio notation calculate perimeters of 2D shapes, | work with percentages greater than 100% calculate areas of circles and composite | percentage change, including original value problems, and simple interest including in financial mathematics know and apply formulae to calculate volume of right prisms | alternate and corresponding angles on parallel lines apply statistics to describe a population | angles in a triangle (e.g. to
deduce and use the angle
sum in any
polygon, and
to derive properties of
regular polygons) use and interpret
scatter graphs of
bivariate data | construct similar shapes, including on coordinate axes, by considering enlargement | | express a multiplicative relationship between two quantities as a ratio or a fraction interpret plans and elevations of 3D shapes | understand and use proportion as equality of ratios measure line segments and angles in geometric figures, including interpreting maps and scale drawings and use of bearings | relate ratios to fractions and to linear functions identify and apply circle definitions and properties, including: centre, radius, chord, diameter, circumference know the formulae circumference of a circle = 2πr = πd, area of a circle = | compare lengths, areas and volumes using ratio notation calculate perimeters of 2D shapes, | work with percentages greater than 100% calculate areas of circles and composite | percentage change, including original value problems, and simple interest including in financial mathematics know and apply formulae to calculate volume of right prisms (including cylinders) | alternate and corresponding angles on parallel lines apply statistics to describe a population apply the property that the | angles in a triangle (e.g. to
deduce and use the angle
sum in any
polygon, and
to derive properties of
regular polygons) use and interpret
scatter graphs of
bivariate data | construct similar shapes, including on coordinate axes, by considering enlargement recognise correlation | | express a multiplicative relationship between two quantities as a ratio or a fraction interpret plans and elevations of 3D shapes interpret, analyse | understand and use proportion as equality of ratios measure line segments and angles in geometric figures, including interpreting maps and scale drawings and use of bearings interpret, analyse and compare the distributions | relate ratios to fractions and to linear functions and to linear functions lidentify and apply circle definitions and
properties, including: centre, radius, chord, diameter, circumference lenow the formulaet circumference of a circle = 2πr = πd, area of a circle = πr² | compare lengths, areas and volumes using ratio notation calculate perimeters of 2D shapes, including circles | calculate areas of circles and composite shapes | percentage change, including original value problems, and simple interest including in financial mathematics know and apply formulae to calculate volume of right prisms (including cylinders) construct theoretical | alternate and corresponding angles on parallel lines apply statistics to describe a population apply the property that the probabilities of an | angles in a triangle (e.g. to
deduce and use the angle
sum in any
polygon, and
to derive properties of
regular polygons) use and interpret
scatter graphs of
bivariate data | construct similar shapes, including on coordinate axes, by considering enlargement recognise correlation construct theoretical | | express a multiplicative relationship between two quantities as a ratio or a fraction interpret plans and elevations of 3D shapes interpret, analyse and compare the | understand and use proportion as equality of ratios measure line segments and angles in geometric figures, including interpreting maps and scale drawings and use of bearings interpret, analyse and compare the distributions of data sets from univariate | relate ratios to fractions and to linear functions and to linear functions lidentify and apply circle definitions and properties, including: centre, radius, chord, diameter, circumference lenow the formulaet circumference of a circle = 2πr = πd, area of a circle = πr² | compare lengths, areas and volumes using ratio notation calculate perimeters of 2D shapes, including circles | calculate areas of circles and composite shapes | percentage change, including original value problems, and simple interest including in financial mathematics know and apply formulae to calculate volume of right prisms (including cylinders) construct theoretical | alternate and corresponding angles on parallel lines apply statistics to describe a population apply the property that the | angles in a triangle (e.g. to deduce and use the angle sum in any polygon, and to derive properties of regular polygons) use and interpret scatter graphs of bivariate data | construct similar shapes, including on coordinate axes, by considering enlargement recognise correlation construct theoretical possibility spaces for | | express a multiplicative relationship between two quantities as a ratio or a fraction interpret plans and elevations of 3D shapes interpret, analyse and compare the distributions of data sets | understand and use proportion as equality of ratios measure line segments and angles in geometric figures, including interpreting maps and scale drawings and use of bearings interpret, analyse and compare the distributions of data sets from univariate empirical distributions | relate ratios to fractions and to linear functions and to linear functions identify and apply circle definitions and properties, including: centre, radius, chord, diameter, circumference know the formulae circumference of a circle = $2\pi r = \pi d$, area of a circle = πr^2 record describe and analyse the frequency of | compare lengths, areas and volumes using ratio notation calculate perimeters of 2D shapes, including circles apply ideas of randomness, fairness and | calculate areas of circles and composite shapes | percentage change, including original value problems, and simple interest including in financial mathematics know and apply formulae to calculate volume of right prisms (including cylinders) construct theoretical possibility spaces for single experiments with | alternate and corresponding angles on parallel lines apply statistics to describe a population apply the property that the probabilities of an exhaustive set of outcomes | angles in a triangle (e.g. to
deduce and use the angle
sum in any
polygon, and
to derive properties of
regular polygons) use and interpret
scatter graphs of
bivariate data | construct similar shapes, including on coordinate axes, by considering enlargement recognise correlation construct theoretical possibility spaces for combined experiments | | express a multiplicative relationship between two quantities as a ratio or a fraction interpret plans and elevations of 3D shapes interpret, analyse and compare the | understand and use proportion as equality of ratios measure line segments and angles in geometric figures, including interpreting maps and scale drawings and use of bearings Interpret, analyse and compare the distributions of data sets from univariate empirical distributions through appropriate | relate ratios to fractions and to linear functions and to linear functions lidentify and apply circle definitions and properties, including: centre, radius, chord, diameter, circumference know the formulaet circumference of a circle = $2\pi r = \pi d$, area of a circle = πr^2 record describe and analyse the frequency of outcomes of | compare lengths, areas and volumes using ratio notation calculate perimeters of 2D shapes, including circles apply ideas of randomness, fairness and equally likely | calculate areas of circles and composite shapes | percentage change, including original value problems, and simple interest including in financial mathematics know and apply formulae to calculate volume of right prisms (including cylinders) construct theoretical | alternate and corresponding angles on parallel lines apply statistics to describe a population apply the property that the probabilities of an exhaustive set of outcomes sum to one; apply the | angles in a triangle (e.g. to deduce and use the angle sum in any polygon, and to derive properties of regular polygons) use and interpret scatter graphs of bivariate data | construct similar shapes, including on coordinate axes, by considering enlargement recognise correlation construct theoretical possibility spaces for | | express a multiplicative relationship between two quantities as a ratio or a fraction interpret plans and elevations of 3D shapes interpret, analyse and compare the distributions of data sets | understand and use proportion as equality of ratios measure line segments and angles in geometric figures, including interpreting maps and scale drawings and use of bearings interpret, analyse and compare the distributions of data sets from univariate empirical distributions | relate ratios to fractions and to linear functions and to linear functions identify and apply circle definitions and properties, including: centre, radius, chord, diameter, circumference know the formulae circumference of a circle = $2\pi r = \pi d$, area of a circle = πr^2 record describe and analyse the frequency of outcomes of probability | compare lengths, areas and volumes using ratio notation calculate perimeters of 2D shapes, including circles apply ideas of randomness, fairness and equally likely events to | calculate areas of circles and composite shapes | percentage change, including original value problems, and simple interest including in financial mathematics know and apply formulae to calculate volume of right prisms (including cylinders) construct theoretical possibility spaces for single experiments with equally likely | alternate and corresponding angles on parallel lines apply statistics to describe a population apply the property that the probabilities of an exhaustive set of outcomes sum to one; apply the property that the | angles in a triangle (e.g. to deduce and use the angle sum in any polygon, and to derive properties of regular polygons) use and interpret scatter graphs of bivariate data enumerate sets and combinations of sets systematically, | construct similar shapes, including on coordinate axes, by considering enlargement recognise correlation construct theoretical possibility spaces for combined experiments with equally | | express a multiplicative relationship between two quantities as a ratio or a fraction interpret plans and elevations of 3D shapes interpret, analyse and compare the distributions of data sets from univariate empirical | understand and use proportion as equality of ratios measure line segments and angles in geometric figures, including interpreting maps and scale drawings and use of bearings interpret, analyse and compare the distributions of data sets from univariate empirical distributions through appropriate measures of central | relate ratios to fractions and to linear functions and to linear functions lidentify and apply circle definitions and properties, including: centre, radius, chord, diameter, circumference know the formulaet circumference of a circle = $2\pi r = \pi d$, area of a circle = πr^2 record describe and analyse the frequency of outcomes of | compare lengths, areas and volumes using ratio notation calculate perimeters of 2D shapes, including circles apply ideas of randomness, fairness and equally likely | calculate areas of circles and composite shapes relate relative expected frequencies to theoretical probability, using | percentage change, including original value problems, and simple interest including in financial mathematics know and apply formulae to calculate volume of right prisms (including cylinders) construct theoretical possibility spaces for single experiments with equally likely outcomes and | alternate and corresponding angles on parallel lines apply statistics to describe a population apply the property that the probabilities of an exhaustive set of outcomes sum to one; apply the property that the probabilities of an | angles in a triangle (e.g. to deduce and use the angle sum in any polygon, and to derive properties of regular polygons) use and interpret scatter graphs of bivariate data enumerate sets and combinations of sets systematically, using tables, | construct similar
shapes, including on coordinate axes, by considering enlargement recognise correlation construct theoretical possibility spaces for combined experiments with equally likely outcomes | | express a multiplicative relationship between two quantities as a ratio or a fraction interpret plans and elevations of 3D shapes interpret, analyse and compare the distributions of data sets from univariate empirical distributions through appropriate graphical | understand and use proportion as equality of ratios measure line segments and angles in geometric figures, including interpreting maps and scale drawings and use of bearings interpret, analyse and compare the distributions of data sets from univariate empirical distributions through appropriate measures of central tendency (median, mean, | relate ratios to fractions and to linear functions and to linear functions identify and apply circle definitions and properties, including: centre, radius, chord, diameter, circumference for a circle = $2\pi r = \pi d$, area of a circle = πr^2 record describe and analyse the frequency of outcomes of probability experiments | compare lengths, areas and volumes using ratio notation calculate perimeters of 2D shapes, including circles apply ideas of randomness, fairness and equally likely events to calculate expected | calculate areas of circles and composite shapes relate relative expected frequencies to theoretical probability, using appropriate language and | percentage change, including original value problems, and simple interest including in financial mathematics know and apply formulae to calculate volume of right prisms (including cylinders) construct theoretical possibility spaces for single experiments with equally likely outcomes and use these to calculate | alternate and corresponding angles on parallel lines apply statistics to describe a population apply the property that the probabilities of an exhaustive set of outcomes sum to one; apply the property that the probabilities of an exhaustive set of mutually | angles in a triangle (e.g. to deduce and use the angle sum in any polygon, and to derive properties of regular polygons) use and interpret scatter graphs of bivariate data enumerate sets and combinations of sets systematically, using tables, | construct similar shapes, including on coordinate axes, by considering enlargement recognise correlation construct theoretical possibility spaces for combined experiments with equally likely outcomes and use these to calculate | | express a multiplicative relationship between two quantities as a ratio or a fraction interpret plans and elevations of 3D shapes interpret, analyse and compare the distributions of data sets from univariate empirical distributions through appropriate graphical representation involving | understand and use proportion as equality of ratios measure line segments and angles in geometric figures, including interpreting maps and scale drawings and use of bearings interpret, analyse and compare the distributions of data sets from univariate empirical distributions through appropriate measures of central tendency (median, mean, mode and modal class) and | relate ratios to fractions and to linear functions and to linear functions identify and apply circle definitions and properties, including: centre, radius, chord, diameter, circumference from the formulae circumference of a circle = $2\pi r = \pi d$, area of a circle = πr^2 record describe and analyse the frequency of outcomes of probability experiments using tables and | compare lengths, areas and volumes using ratio notation calculate perimeters of 2D shapes, including circles apply ideas of randomness, fairness and equally likely events to calculate expected outcomes of multiple | calculate areas of circles and composite shapes relate relative expected frequencies to theoretical probability, using | percentage change, including original value problems, and simple interest including in financial mathematics know and apply formulae to calculate volume of right prisms (including cylinders) construct theoretical possibility spaces for single experiments with equally likely outcomes and | alternate and corresponding angles on parallel lines apply statistics to describe a population apply the property that the probabilities of an exhaustive set of outcomes sum to one; apply the property that the probabilities of an | angles in a triangle (e.g. to deduce and use the angle sum in any polygon, and to derive properties of regular polygons) use and interpret scatter graphs of bivariate data enumerate sets and combinations of sets systematically, using tables, | construct similar shapes, including on coordinate axes, by considering enlargement recognise correlation construct theoretical possibility spaces for combined experiments with equally likely outcomes | | express a multiplicative relationship between two quantities as a ratio or a fraction interpret plans and elevations of 3D shapes interpret, analyse and compare the distributions of data sets from univariate empirical distributions through appropriate graphical | understand and use proportion as equality of ratios measure line segments and angles in geometric figures, including interpreting maps and scale drawings and use of bearings interpret, analyse and compare the distributions of data sets from univariate empirical distributions through appropriate measures of central tendency (median, mean, | relate ratios to fractions and to linear functions and to linear functions identify and apply circle definitions and properties, including: centre, radius, chord, diameter, circumference for a circle = $2\pi r = \pi d$, area of a circle = πr^2 record describe and analyse the frequency of outcomes of probability experiments | compare lengths, areas and volumes using ratio notation calculate perimeters of 2D shapes, including circles apply ideas of randomness, fairness and equally likely events to calculate expected | calculate areas of circles and composite shapes relate relative expected frequencies to theoretical probability, using appropriate language and | percentage change, including original value problems, and simple interest including in financial mathematics know and apply formulae to calculate volume of right prisms (including cylinders) construct theoretical possibility spaces for single experiments with equally likely outcomes and use these to calculate | alternate and corresponding angles on parallel lines apply statistics to describe a population apply the property that the probabilities of an exhaustive set of outcomes sum to one; apply the property that the probabilities of an exhaustive set of mutually | angles in a triangle (e.g. to deduce and use the angle sum in any polygon, and to derive properties of regular polygons) use and interpret scatter graphs of bivariate data enumerate sets and combinations of sets systematically, using tables, | construct similar shapes, including on coordinate axes, by considering enlargement recognise correlation construct theoretical possibility spaces for combined experiments with equally likely outcomes and use these to calculate | | calculate with roots,
and with integer
indices | calculate exactly with multiples of π | calculate with standard
form A x 10 ⁿ ,
where 1 ≤ A < 10
and n is
an integer | use inequality notation to specify simple error intervals due to truncation or rounding | apply and interpret
limits of
accuracy | understand and use the concepts and vocabulary of identities | simplify and manipulate algebraic expressions by expanding products of two binomials and factorising quadratic expressions of the form $x^2 + bx + c$ | argue mathematically to
show algebraic
expressions are
equivalent, and
use algebra to
support and construct
arguments | understand and use the concepts and vocabulary of inequalities | |---|---|---|---|---|--|---|--|--| | use the form $y = mx + c$ to identify parallel lines | find the equation of the line through two given points, or through one point with a given gradient | recognise, sketch and interpret graphs of quadratic functions | recognise, sketch and interpret graphs of simple cubic functions and the reciprocal function y = 1/x with x ≠ 0 | plot and interpret graphs (including reciprocal graphs) and graphs of non-standard functions in real contexts, to, find approximate solutions to problems such as simple kinematic problems involving distance, speed and acceleration | solve, in simple cases, two linear simultaneous equations in two variables algebraically | find
approximate
solutions to
simultaneous equations
using a graph | translate simple situations or procedures into algebraic expressions or formulae | derive an equation
(or two simultaneous
equations),
solve the
equation(s) and
interpret the solution | | solve linear
inequalities in
one variable | | St | age | 9 | | | | represent the solution
set to an
inequality
on a number line | | recognise and
use Fibonacci
type sequences,
quadratic sequences | change freely between compound units (e.g. density, pressure) in numerical and algebraic contexts | | Ma | ithe | mat | tics | | use compound units such as density and pressure | | interpret the gradient
of a straight line
graph as a
rate of change; | solve problems involving
direct and inverse
proportion, including
graphical and algebraic
representations | constructing a | construct give figures and solve loci problems; know that the perpendicular distance from a point to a line is | apply angle facts, triangle congruence, similarity and properties of quadrilaterals to conjecture and derive results about angles and sides including Pythagoras. Theorem and the fact that the base angles of an isosceles triangle are equal, and use known results to | use the basic
congruence criteria
for triangles
(SSS, SAS, ASA, RHS) | identify and apply circle definitions and properties, including: tangent, arc, sector and segment | construct plans and elevations of 3D shapes | calculate arc lengths,
angles and areas
of sectors
of circles | | calculate surface area of
right prisms (including
cylinders) | apply the concepts of congruence and similarity, including the relationships between lengths in similar figures | know the formulae for:
Pythagoras' theorem,
$a^2 + b^2 = c^2$, and
apply it to find
lengths in
right-angled triangles in
two dimensional figures | interpret and construct tables, charts and diagrams, including tables and line graphs for time series data and know their appropriate use | draw estimated lines of best fit; make predictions | know correlation does
not indicate causation;
interpolate and
extrapolate
apparent trends
whilst knowing the
dangers of so doing | enumerate sets and combinations of sets systematically, using tree diagrams | understand that empirical
unbiased samples
tend towards
theoretical
probability
distributions, with
increasing sample size | calculate the probability of independent and dependent combined events, including using tree diagrams and other representations, and know the underlying assumptions | | estimate powers
and roots of any
given positive
number | calculate with roots, and with integer and fractional indices | calculate
exactly
with
surds | apply systematic
listing strategies
including use
of the product
rule for counting | change recurring decimals into their corresponding fractions and vice versa | apply and interpret limits of accuracy, including upper and lower bounds | simplify and
manipulate algebraic
expressions
involving
algebraic
fractions | manipulate algebraic expressions by expanding products of more than two binomials | simplify and manipulate algebraic expressions (including those involving surds) by expanding products of two binomials and factorising quadratic expressions of the form x² + bx + c, including the difference of two squares | |--|--|---|---|---|---|---|--|---| | manipulate algebraic expressions by factorising quadratic expressions of the form $ax^2 + bx + c$ | interpret the reverse process as the 'inverse function' | use the form y = mx + c to identify perpendicular lines | plot and interpret graphs (including exponential graphs) and graphs of non-standard functions in real contexts, to find approximate solutions to problems such as simple kinematic problems (distance speed and acceleration) | Calculate or graphs and areas under graphs (including quadratic and other non-linear graphs), and interpret results in cases such as distance-time graphs, velocity-time graphs on financial contexts | | find the equation
of a tangent
to a circle at
a given point | deduce roots of quadratic functions algebraically (factorising) | identify and interpret
roots, intercepts,
turning points
of quadratic
functions
graphically | | solve quadratic equations algebraically by factorising | solve quadratic equations (including those that require rearrangement) algebraically by factorising | find approximate solutions to quadratic equations using a graph | Sta | age | 10 | solve two linear
simultaneous
equations in
two variables
algebraically | solve linear
inequalities
in two variables | represent the solution
set to an
inequality
using set notation
and on a graph | | deduce
expressions to
calculate the nth
term of
quadratic sequences | recognise and use simple geometric progressions (r^ n where n is an integer, and r is a rational number > 0) | find approximate solutions to equations numerically using iteration | Ma | the | mat | | make links to similarity (including trigonometric ratios) and scale factors | interpret equations
that describe
direct and
inverse proportion | | recognise and interpret graphs that illustrate direct and inverse proportion | interpret the gradient
at a point on a curve
as the instantaneous rate
of change | set up, solve and interpret
the answers in growth
and decay
problems,
including
compound interest | understand that X is
inversely proportional to
Y is equivalent to X is
proportional to 1/Y | identify, describe and construct similar shapes, including on coordinate axes by considering enlargement (including fractional scale factors) | describe the changes and
invariance achieved
by combinations of
rotations, reflections and
translations | concerning
angles, radii,
tangents and chords, and
use them to prove
related results | calculate surface area and volume of spheres, pyramids, cones and composite solids | apply the concepts of congruence and similarity, including the relationships between length, areas and volumes in similar figures | | know the trigonometric ratios, sinθ = opposite/ hypotenuse, cosθ = adjacent/hypotenuse, tanθ = opposite/adjacent | apply it to find
angles and lengths
in right-angled
triangles in
two dimensional
figures | know the exact values of $\sin\theta$ and $\cos\theta$ for $\theta=0^\circ, 30^\circ, 45^\circ, 60^\circ$ and 90° ; know the exact value of $\tan\theta$ for $\theta=0^\circ, 30^\circ, 45^\circ$ and 60° | apply addition and subtraction of vectors, multiplication of vectors by a scalar, and diagrammatic and column representations of vectors | infer properties of populations or distributions from a sample, whilst knowing the limitations of sampling | | interpret, analyse and compare the distributions of data sets from univariate empirical distributions through appropriate graphical representation involving discrete, continuous and grouped data, including box plots | interpret, analyse and compare the distributions of data sets from univariate empirical distributions throug appropriate measures of central tendency including quartiles and Inter-quartile range | h using expected | recognise, sketch and interpret graphs of exponential functions simplify surd solve quadratic deduce turning interpret the expressions $y = k^x$ for positive equations by points of sketch translations deduce roots involving squares succession values of k, and completing the quadratic and reflections of quadratic of two functions (e.g. $12 = \sqrt{4 \times 3}$) the trigonometric square and by functions of a functions as a 'composite $= \sqrt{4} \times \sqrt{3} = 2\sqrt{3}$ functions using the by completing given function algebraically function' and rationalise (with arguments in degrees) quadratic formula the square denominators $v = \sin x$, $v = \cos x$ and v =tan x for angles of any size recognise and use simple solve two simultaneous equations in two variables where one is geometric progressions (r^n where n is an integer, solve quadratic and r is a inequalities in rational one variable number > 0 or a surd) and quadratic algebraically other sequences apply the concepts work with
Mathematics of average and construct equations instantaneous rate of general that describe iterative change (gradients of chords direct and processes and tangents) in numerical, inverse proportion algebraic and graphical contexts construct and interpret know the formulae for: diagrams for grouped Pythagoras' theorem, a2 + b2 apply them to find angles know and apply the sine rule discrete data and know and apply = c², and apply it to find and lengths in right-angled $a/\sin A = b/\sin B = c/\sin C$, and use vectors to describe and construct Area = $\frac{1}{2}ab \sin C$ to continuous construct lengths in triangles and, the cosine rule, congruent and similar calculate the area, data, i.e. right-angled $a^2 = b^2 + c^2 - 2bc \cos A$ geometric where possible. shapes, including on sides or angles of histograms with triangles and, where general triangles to find unknown arguments coordinate axes, by any triangle. egual and unegual and proofs possible, general triangles in three dimensional lengths and angles considering enlargement class intervals and and in three dimensional figures (including negative scale know their appropriate figures factors) use