"I've missed more than 9000 shots in my career. I've lost almost 300 games. 26 times, I've been trusted to take the game winning shot and missed. I've failed over and over and over again in my life. And that is why I succeed. "

Michael Jordan

Name:

Family Group:

LEARNING - LOVING - LIVING

TRINITY 2

YEAR 9 KNOWLEDGE ORGANISER

HOW TO USE MY KNOWLEDGE ORGANISER

The timetable shows the **subjects** you should be studying and the days that you should be studying them. You should **complete your work in your exercise book**.

Each evening you should draw a straight line (using a ruler), under the previous day's work, and write the date, clearly at the top. You need to bring your KO and exercise book with you to school EVERYDAY.

The **KO** work that you have completed for the week will be checked in Family Group time **EVERY** Friday. If homework is not of an appropriate standard or amount will result in an after school detention. Knowledge tests will also be used frequently in lessons.

SUBJECT HOMEWORK

Students will also be **given** additional subject homework to be completed throughout the week and/or can use FREE online revision tools such as <u>www.senecalearning.com</u>

It is also recommended that students regularly **READ** a variety of fiction and non fiction books that they choose for pleasure. This extra reading will help to develop and broaden their general knowledge.

In **ENGLISH** all students will be expected to complete 1-2 reading assignments each week by accessing <u>www.CommonLit.org</u>. Each assignment will take 20-30 minutes and students will be required to answer multiple choice questions to check their understanding of what they have read. Each class has a code based on the set they are in:

English Set	Class Code for Commonlit
9.4	R8NJQ5
9.3	77VZQZ
9.2	379E93
9.1	QD96JG
9GR	Y8K6V3
IN NAATUC at	do ato ava avva ato dita vvatale de

In **MATHS** students are expected to watch short explanation videos and complete activities on the online platform of <u>https://mathswatch.co.uk</u>. Students can log in using the details and password they use to log in to the school computers.

<u>HOMEWORK TIMETABLE</u>

You should spend at least 1 hour per night on homework = 3 subjects x 20 mins per subject

Year 9	Subject 1	Subject 2	Subject 3		
Monday	Maths	Option A	Option C		
Tuesday	English	Option B	Option C		
Wednesday	Maths	Religious Education	English		
Thursday	English	Science	Option A		
Friday	Maths	MFL	Option B		

<u>RETRIEVAL ACTIVITY IDEAS</u>

Knowledge organisers are for learning and mastering the knowledge in each subject. There are many different ways you can do this,

however some **PROVEN** methods to try in your work book are:

After you have retrieved as much as you can go back to your books of check what you've missed. Next time focus on that missing information

EARNING - LOVING - LIVING

4

USING FLASH CARDS SUCCESSFULLY

Once flash cards are created, you will need to use them correctly to have an impact. Follow the method below for the best knowledge retention

		Stylistic features	Definition
		and relevant terms	
The Gothic	1) London is opaque, funereal, tenebrous and ominous	1. Allegory	A story, poem or picture that can be interpreted
Genre	2) Scrooge's house is in a lonely, industrial part of town, very dark and foggy, and very		to reveal a hidden meaning, typically a moral or
	old and sparsely furnished.		political one.
	3) Scrooge and London link to inequality, exploitation, greed, capitalism	2. Gothic	A genre or mode of literature and film that
	4) Gothic stories deal with doubt: religion becomes less important, an interest in the		combines fiction and horror, death, and at times
	supernatural replaces this.		romance.
	5) Gotnic stories often take place in exotic and strange locations: Dickens uses this	3. Motif	A recurring theme or idea in literature or artistic
	Convention by having scrooge ny through London and beyond with the spirits.		work
	b) characters in Gotine novels are orten one-dimensional, or stock, characters who do	4. Parody	An imitation of the style of a particular writer,
	because be changes dramatically as a result of his experiences in the novella		artist, or genre with deliberate exaggeration for
	7) Like many Gothic characters. Scrooge is a tyrant to begin with	5 Foil	A foil is a character who contracts with another
		5. FUI	character — usually the protagonist — to
Historical	1. 1824 – Dickens' father is sent to jail for debt and Dickens has to give up his		highlight particular qualities of the other
context	education until his father inherits some money and he goes to a private school		character.
	2. Dickens was put to work in a warehouse, pasting labels on bottles. He had	6. Morality tale	A story which comments on issues of right and
	experience of poverty.		wrong.
	3. Dickens became a writer of fiction and journalism, reporting on court cases and	7.	A theory put forward by Revd Thomas Malthus,
	working for radical newspapers on his disillusionment with politics and the class	Malthusian	in his famous Essay on Population, that without
	system.	economics	some check - like famine or pestilence - human
	1832 – The Great Reform Bill gave many middle class property owners the right		populations naturally grew faster than food
	to vote for the first time. Large sections of the middle classes, the working		production.
	classes and women still didn't have the right to vote.	8. Deprivation	The damaging lack of material benefits
	5. 1834 – Poor Law Amendment Act – Led to a cut in aid given to paupers to help		considered to be basic necessities in a society
	them stay in their own nomes. Workhouses were created which poor people	9. Dehumanisation	To deprive of positive human qualities.
	housing	10. Utilitarianism	the doctrine that actions are right if they are
	December 1840 and February 1843 – Children's Employment Commission	11 Dedemation	Useful or for the benefit of a majority
	reports	11. Redemption	The action of being saved from sin, error of evil
	7. September 1843 – Dickens visits a "Ragged School."	12. Philanthropy	The desire to promote the welfare of others,
	8. October 1843 – Dickens speaks at an event for Manchester Athenaeum, an		expressed especially by the generous donation
	organisation bringing education and culture to the working masses.	12 Secular	or money to good causes.
	9. December 1843 Dickens writes A Christmas Carol focusing on how many of		matters
	society's ills can be blamed on greed for money and status.	14 Austere	Severe or strict in manner or attitude
	10. December 1843 Dickens writes A Christmas Carol focusing on how many of		Severe of strict in manner of attitude
	society's ills can be blamed on greed for money and status.		

<u>YEAR 9 - T2- ENGLISH- A CHRISTMAS CAROL BY CHARLES DICKENS</u>

Key Vocabulary	Definition		
1) Forlorn (adj)	Pitifully sad or lonely	16) Ostracised (v)	Exclude from a society or group.
2) Allegory (n) Allegorical (adj)	A story, poem or picture that can be interpreted to reveal a hidden meaning, typically a moral or political one.	17) Deprivation (n) Deprive(v)	The damaging lack of material benefits considered to be basic necessities in a society
3) Apathy (n) Apathetic (adj)	Showing or feeling no interest, enthusiasm or concern	18) Hyperbolise (v) Hyperbole (n)	Represent something as being larger, better, or worse than it really is; exaggerate.
4) Malevolent (a) Malevolence (n)	Having or showing a wish to do evil to others, showing ill- will.	19)Philanthropy (n) Philanthropist (n) Philanthropic (adj)	The desire to promote the welfare of others, expressed especially by the generous donation of money to good causes.
5) Avarice (n) Avaricious (adj)	Extreme greed for wealth or material gain.	20) Opulence (n) Opulent (adj)	great wealth or luxuriousness
6) Abject (adj)	Extremely unpleasant or degrading, completely without pride or dignity	21) Stalwart (adj)	loyal, reliable, and hard-working
7) Deprivation (n) Depraved (adj) Deprive (v)	The damaging lack of material benefits and basic necessities	22) Abject (adj)	Experienced or present to the maximum degree.
8) Empathy (n) Empathetic (adj) Empathise (v)	The ability to understand and share the feelings of another	23) Symbolic (adj) Symbol (n) Symbolism (n)	A thing that represents or stands for something else
9) Rapacious (adj)	Aggressively greedy or graspin	24) Destitute (adj) Destitution (n)	extremely poor and lacking the means to provide for oneself
10) Destitute (adj) Destitution (n)	Extremely poor and lacking the means to provide for oneself.	25) Antithesis	First you mention one thing, then you mention another. Both elements are often opposites
11) Disdain (n) (v) Disdainful (adj)	The feeling that someone or something is unworthy of one's consideration or respect.	26) Parallelism	Giving two or more parts of the sentences a similar form and structure so as to give the passage a definite pattern
12) Contempt (n) Contemptuous (adj)	The feeling that a person or a thing is worthless or beneath consideration.	27) Epistrophe	When you end each sentence or clause with the same word
13)Supplication (n) Supplicate (v)	Ask or beg for something earnestly or humbly	28) Polyptoton	The repeated use of one word as different parts of speech or in different grammatical forms
14) Obsequious (adj) Obsequiousness (n)	Obedient or attentive to an excessive or servile degree.	29) Imperative	Giving a command or order to the listener or audience
15) Disconcerting (adj) Disconcert (v)	Causing one to feel unsettled.	30) posiopesis	A pause-when someone doesn't finish a sentence ()

YEAR 9 - T2- MATHS- HIGHER- STATISTICS

Trinity	LEARNING -	LOVING	- LIVING
---------	------------	--------	----------

Methods Explored						
Stratified Sampling	When the sample you select is based on the size of the subgroups within the population so that your sample is representative of the proportions of these sub groups within the population.					
	There are 20 boys and 40 girls in a year. I need 30 people for my sample. Boys in the sample = $\frac{20}{60} \times 30$					
Cumulative Frequency	This is a way of representing grouped data. To find the cumulative frequency you add the frequencies up as you go. You plot the highest value of the groups against the cumulative frequency.					

100-					Number of minutes (1)	Cumulative features	-
					Number of finitiates (j)	contractive inequality	۰.
90-					0 <1 210	2	4
					0 <1 520	8	4
					0 <t 530<="" th=""><th>18</th><th></th></t>	18	
80-				T I	0 < t ≦ 40	40	1
					0 <t th="" ≦50<=""><th>64</th><th>1</th></t>	64	1
70-			/		0 <t th="" ≦60<=""><th>77</th><th>1</th></t>	77	1
	UQ		¥		0 <t th="" ≦70<=""><th>80</th><th>1</th></t>	80	1
60- cf 50- 40-	Median				Median	= 40	
30 - 20 -	LQ	/		Lo	wer Quartile	= 31	
10 -				Up	per Quartile	= 48	
ō	10 20	30 40	50 60 7	¦ Ir	nterquartile	~ 17	
	Numi	ber of minute	es (t)		Range	IR = 48 - 3	1

Box Plot

A way to show the spread of data in a picture form. The lowest quartile is the value 25% of the way through the data. The median is the middle value. The Upper quartile is 75% of the way through the data. The interquartile range is the difference between the LQ and UQ and is useful as it gives you a measure of spread that excludes outliers around the max and min values unlike the range. The IQR is more reliable therefore.

Histograms

Like a bar chart but where the area of each bar represents the frequency of the bar and not the height. The frequency density is found when you divide the frequency by the class width (group width)

Vocabulary		C
Modal Class	The group with the highest frequency	
Inter-Quartile Range	Upper quartile – Lower quartile. This is a measure of range / consistency.	F
	A line which goes through the middle of the pints to best describe the general	5
Line of best fit	correlation. You should place it so that the same number of points are above and below the line and that it goes in the general direction of the points. It does NOT have to join the "corner" of the graph	F
Discrete data	Data which takes integer values only.	E
Continuous data	Data which can take any decimal value.	

Vocabulary	Where an identifiable link	Maths Watch References - for further self study			
Correlation	between two variables is shown to exist. One thing is affected by another.	57	Frequency Trees		
Frequency	The number of times something happens or appears.	61	Two-Way Tables		
Consistency	The amount by which data points vary. The closer together data is (smaller IQR and range) the more like each other the data points are, so the	62	Averages and the Range		
	more consistent the set of data is.	63	Data - Discrete and Continuous		
Outlier	data is. A data point which does not seem to fit with the general pattern / correlation. The numbers/data that belongs to a specific		Frequency Tables and Diagrams		
Data Set	The numbers/data that belongs to a specific group.	130	Averages from a table		
Population	All the members of a particular group.	152	Sampling Populations		
Sample	A smaller sub-group of the larger population.				
Random	Where every member of a population has an equal chance of selection. This	153	Time Series		
	means the sample taken is fair or un-biased.	176	Stratified sampling		
	Not fair. This is seen when a sample is taken that allows a specific factor to influence the selection.	186	Cumulative Frequency		
Bias	This means every member of the population doe NOT have	187	Box Plots		
	an equal chance of	205	Histograms		

selection.

YEAR 9 - T2- STATISTICS- SCATTER DIAGRAMS AND CORRELATION

Important ideas

SRCC

Important ideas	Question	\rightarrow				
You can investigate whether there is a link between bivariate data using visual and numerical	Correlation		Vocabulary			
methods.	Describe the correlation you would expect for each of the following pairs of variables:	a) No / weak positive	Explanatory variable	The variable that you change		
numerical scale.	a) Adult shoe size and waist sizeb) Hours of sunshine in a day and hours of	b) Weak negative	Variable	chunge		
Key Facts & Formula	rain in a day c) Power cuts and no. of candles sold	c) strong positive	Response variable	The variable that responds to the explanatory variable		
Positive correlation	Regression lines The water in a water tank is measured every 30 minutes, as shown.	a) $\frac{1}{1000}$ $\frac{1}{1000}$ $\frac{1}{1000}$ $\frac{1}{1000}$ $\frac{1}{1000}$	Interpolation	Using a line of best fit to estimate values within a given data set.		
Negative correlation	(u) acutation (u	b) For every minute that	Extrapolation	Predicting values beyond the given set of data		
No correlation	a) Find the equation of the regression line	passes, the height of the water in the tank decreases by 7/9 of a	Regression line	Another name for the line of best fit.		
Coordinates of the mean point $\overline{x} = \frac{\sum f_x}{\sum f}, \ \overline{y} = \frac{\sum f_y}{\sum f}$ Equation of LoBF $\mathbf{y} = \mathbf{ax} + \mathbf{b}$.	given on the scatter diagram b) The value of the gradient of the line c) The height of the water after 100 minutes $\begin{array}{c c c c c c c c c c c c c c c c c c c $	centimetre. c) 387 cm to 3 s.f	SRCC (Spearman's Rank Correlation Coefficient)	A measure of the strength of correlation between two sets of data. The values lie between -1 and 1. The closer to 0, the weaker the correlation.		
srcc $1 - \frac{6\sum d^2}{n(n^2 - 1)}$	Lewis and Dee tried eight flavours of ice- cream (A-h) and gave each flavor a mark from 1-20 where 20 is the best mark. Their results are shown in the table.	 a) -0.405 to 3 d.p. b) There is moderately strong negative 	PMCC (Pearson's Product Moment Coefficient)	A measure of linear correlation used to measure the strength of the association between sets of data.		
	a) Calculate the SRCC b) How do their tastes compare?	correlation, so their tastes are quite different.	LoBF (Line of best fit)	You can use a line of best fit to summarise the relationship shown on a scatter diagram. It can be used to predict value.		

YEAR 9 - T2- SCIENCE- CHEMICAL QUANTITIES

3.2	The sum	of the	The sum of	the M _r of t	he $2Mg + O_2 \rightarrow 2MgO$	Trinity							
Relative	relative a	tomic f the	reactants in	the hown equa	als 48g + 32g = 80g	3.6 Amounts of substances in equations (HT only)							
mass (M _r)	atoms in numbers the form	the shown in ıla	the sum of t products in quantities s	he M _r of tl the hown.	80g = 80g		number nber of					If you have a 60 you need to cor	g of Mg, what mass of HCl do nvert it to MgCl ₂ ?
3.3 Mas	s changes wi	nen a reac	tant or produc	t is a gas			the e nur	Mg	+ 2HC	$J \rightarrow MgCl_2 + J$	H ₂	A _r : Mg =24 so r M : HCl (1 + 35.	nass of 1 mole of Mg = 24g 5) so mass of 1 mole of HCl =
Mass appears to increase during a reaction		f the ants is a gas	Magnesi oxide	um + oxygen → magnesium	3.6	3.6 ions show ng and the eles made		one mole of magnesium reacts with two moles of hydrochloric acid to make		ım of ake	36.5g So 60g of Mg is 60/24 = 2.5 moles		
Mass a decreas reaction	ppears to e during a	One of the products is a gas and has escapedCalcium carbonate → carbon dioxide + calcium oxideTable of m chloride and or products is a gas e gasOne mole of m chloride and or hydrog		chloride and one mole of hydrogen Balanced symbo one mole of Mg, react with it. So you need 2.5:		 I equation tells us that for every , you need two moles of HCl to x2 = 5 moles of HCl 							
3.4 Che	mical measu	rements					of m						
Whene	/er a	Can de	atormino who	her the	1. Calculate the mean		•					You will need 5	X 36.5g Of HCI= 182.5g
taken, t	here is	mean	value falls wit	hin the	the results	3.7- U	sing moles to	balanc	e equa	ations (HT or	nly)		
always some range of uncertainty of the result obtained result		of the	3. Estimate of uncertainty in mean would be half the range	The back of the ba	The balancing numbers in a symbol equation can be calculated from the masses of reactants and products Convert				Convert the mas and convert the number ratios.	e masses in grams to amounts in moles rt the number of moles to simple whole tios.			
3.1 Con	servation	No atoms	s are lost or m	ade l	Mass of the products equals	3.5 -Moles (HT only)							
ormass		auring a			ne mass of the reactants.	Chem	ical amounts						One mole of H ₂ O = 18g (1 + 1 +
3.1 Con	servation of	mass and I	balanced symb	ool equatio	ons	are measured in Mass of one mole of grams = relative form			f a sul mula	nula mass			
-	Represent ch reactions an	esent chemical $H_2 + Cl_2 \rightarrow 2HCl$		Cl		moles	moles (mol)				One m		One mole of Mg = 24g
symb	the same nu	mber of	Subscript nun	nbers shov	rs show the number of atoms of the		One mole of		of any substance will		6.02 x 10 ²³ per mole		
alanced quations	element on l sides of the	ooth	th Normal script numbe		ers show the number of		contain the same number particles, atoms, molecules or		nber of les or ions.	One mole of H ₂ O wi One mole of NaCl w		ill contain 6.02 x 10 ²³ molecules vill contain 6.02 x 10 ²³ Na ⁺ ions	
3.8 Concentration of solutions					Ho Number of moles = <u>mass (g)</u> or <u>mass (g)</u>			Ном	v many moles of in 4.7g of Give your ans	sulfuric acid molecules are there sulfuric acid (H ₂ SO ₄)? wer to 1 significant figure.			
Measured in mass per given volume of Conc. = mass (g) up (umo (dm3)) HT only Greater concent		only eater mass = higher ncentration.		A _r M _r				<u>4.7</u> = 0.05 mol 98 (M _r of H ₂ SO ₄)					
solution	ı (g/dm³)			Gr coi	Greater volume = lower concentration.					Limiting	reacta	ants (HT only)	
Example: 1. Mean value is 46.5s 2. Range of results is 44s to 49s = 5s 3. Time taken was 46.5s ±2.5s					The reactant that is completely used upLimits the amount of product that is madeLess moles of p made			Less moles of product are made.					

<u>YEAR 9 - T2- SCIENCE- CHEMICAL QUANTITIES</u>

3.9	Percentage yield									
Per	centage yield			A piece of sodium metal is heated	Using concentrations of solutions in mol/dm ³ (HT only, chemistry only)					
is c am pro as a of t the am	omparing the ount of duct obtained a percentage he maximum oretical ount	% Yield = <u>Mass of</u> 100 Max. theoretic	product made x al mass	in chlorine gas. A maximum theoretical mass of 10g for sodium chloride was calculated, but the actual yield was only 8g. <i>Calculate the percentage yield.</i> Percentage yield = 8/10 x 100 =80%	3.10 A measure of the amount of starting materials that end up as useful products	Atom econom product from reactants fron	ny = <u>Relative fo</u> <u>equation</u> x Sum of relati n equation	ormula n 100 ive form	nass of desired	High atom economy is important or sustainable development and economic reasons
		It is not always possible to	The reaction h	reversible.			Atom eco	onomv		
pro	Yield is the amount of duct obtained	obtain the calculated	Some of t separa	he product may be lost when it is ted from the reaction mixture.	Calculate the ato	om economy for	making hydro	ogen by	reacting zinc wit	n hydrochloric acid:
pre		amount of a product	Some of the re	eactants may react in ways different to the expected reaction.			Zn + 2HCl →	ZnCl ₂ +	H ₂	
200 dio	g of calcium cark xide. <i>Calculate t</i>	oonate is heated. It he theoretical mass	HT only: decomposes to of calcium oxide	make calcium oxide and carbon e made.	M _r of H ₂ = 1 + 2 M _r of Zn + 2HCl =	1 = 2 65 + 1 + 1 + 35.!	5 + 35.5 = 138			
CaCO ₃ → CaO + CO ₂ M_r of CaCO ₃ = 40 + 12 + (16x3) = 100 M_r of CaO = 40 + 16 = 56 100g of CaCO ₃ would make 56 g of CaO 5a 200 mould make make 112 m					Atom economy = $\frac{2}{_{138}} \times 100$ = $\frac{2}{_{138}} \times 100$ = 1.45% This method is unlikely to be chosen as it has a low atom economy.					
3.8	Concentration	Concentration =	Wha	t is the concentration of a solution	3.12 Use of amount of substance in relation to volumes of gases (HT only, chemistry only)					
of a amo per solu	solution is the ount of solute volume of ition	<u>amount (mol)</u> (mol/dm³) volume (dm³)	solut 35/0	nas 35.0g of solute in 0.5dm° of tion? 1.5 = 70 g/dm³	Equal amounts moles or gase occupy the sal volume under same condition	Equal amounts of moles or gases occupy the same volume under the temperature		No. of moles of gas = vol c (dm ³)		gas = <u>vol of gas</u> 24dm ³
	lf the column of	lt takes 1	2NaOH(aq) + H_2SC 2.20cm ³ of sulfuric	$D_4(aq)$ → Na ₂ SO ₄ (aq) + 2H ₂ O(I) acid to neutralise 24.00cm ³ of sodium	temperature a pressure	and pre	pressure) is 24 dm ³			
If the volumes of two solutions that react completely are known and the concentrations of one solution is known, the concentration of the other solution can be calculated.		two It cakes 12.20cm ² or summic acid to neutralise 24.00cm ² or sodium hydroxide solution, which has a concentration of 0.50mol/dm ³ . cate check cone the 0.5 mol/dm ³ x (24/1000) dm ³ = 0.012 mol of NaOH The equation shows that 2 mol of NaOH reacts with 1 mol of H ₂ SO ₄ , so the number of moles in 12.20cm ³ of sulfuric acid is (0.012/2) = 0.006 mol of sulfuric acid Calculate the concentration of sulfuric acid in mol/dm ³ 0.006 mol x (1000/12.2) dm ³ =0.49mol/dm ³			What is the volu of butane (C_4H_{10}) g $M_r: (4 \times 12) + (10)$ 11.6/58 = 0.20 m Volume = 0.20 x	ume of 11.6 g as at RTP? 0 x 1) = 58 nol x 24 = 4.8 dm ³	6g of a h dm ³ . Ca 1 mole = M _r = 6 / If 6g = 0	hydroca culate = 24 dm ⁻ 0.2 = 30 .2 mol,	rbon gas had a v its molecular ma ³ , so 4.8/24 = 0.2 D 1 mol equals 30 g	olume of 4.8 ss. mol

YEAR 9 - TZ- SCIENCE- CHEMICAL QUANTITIES

YEAR 9 - T2- GEOGRAPHY - THE UK'S EVOLVING HUMAN LANDSCAPE

No.	Key Term	Definition	Simplified Distance Decay Model				
1	Population density	The average number of people in a given area, expressed as people per km ² .	High Price of land	Shops and off afford high lar the CBD	fices can nd values Industry highest I	cannot affo and values	ord th so is
2	Multipler effect	When people or businesses move to an area and invest money on housing and services, which in turn creates more jobs and attracts more people.		Shops and offices Industry	\checkmark	Housing only affo land valu	g can ord lo ues.
3	Northern Powerhouse	Liverpool, Manchester, Leeds, Bradford and Sheffield form a major core region that almost rivals London's population for size.	C.	B.D. Distance	As incr con valu	distance from the eases there is lender the set of the	e CBD ess d, so e decay
4	Affluent	Wealthy	No .	Newham		Richmo	ond
5	Enterprise zones	Places where the UK government offers companies help with start up costs, reduced taxes and access to	13	Infant mortality rate (per 1000 births)	5.5	2.75	
		were 24, all in England most in urban areas.	14	People living with a long term illness	12. 3	7.6	
6	Net migration	More people immigrating (coming in) than emigrating (going out).	15	Premature deaths	210	121	
7	Multicultural	A variety of different cultures or ethnic groups within one society.		000 population			
8	Ageing population	A population that has a large amount of older people.	16	Percentage of students aged 16 who did not get 5	62	63	
9	The domino effect	The collapse of one industry leads to the collapse of other industries.		GCSE at A*-C (2012)			
10	Old economy	Primary and second sector jobs	17	% of 19 years olds with no	41	37	
11	New Economy	Tertiary and quaternary sector jobs, service sector jobs, knowledge economy.	18	qualitifications % of 5-16 year olds taking free	20	8.4	
12	Footloose	Industries that locate anywhere (as long as there is good internet/communication links)	19	% adults educated to degree level	26	64	

	Field work						
I the	No	Key Term	Definition				
BD	20	Enquiry	Means the process of investigation to find an answer to a question				
low S.	21	Fieldwork	Work carried out in the outdoors				
BD	22	Primary Data	Data you have collected yourself.				
cay)	23	Secondary data	Data that has been collected by someone else				
d	24	IMD	Index of Multiple Deprivation				
	25	Census	A survey of households conducted in the UK once every ten years. The last one was 2011				
	26	Random sampling	Where samples are chosen fairly randomly, and every person in a questionnaire has an equal chance of being selected.				
	27	Systematic Sampling	Working to a system to collect data, for example, every 20 meters or paces along a road to record land use.				
	28	Stratified Sampling	Collecting a sample made up of different parts; for example deliberately selecting samples of different people within the city so you include the whole range of people found there.				
	29	Qualitative	Data collection that uses numbers				
	30	Quantitative	Data collection that doesn't rely on numbers or counting.				
	31	Quartiles	Dividing a list of numbers into four equal groups.				

YEAR 9 - T2- HISTORY- CRIME, PUNISHMENT AND LAW ENFORCEMENT IN EARLY MODERN ENGLAND 1500-1700

Early	Modern England Crime and Punishment			\sim
1	Between c.1500-c.1700, there were wide ranging social, religious and	Key W	ords	
	political changes in England. Religion became more volatile after Henry	22	Martin Luther	German monk who protested against the Catholic Church.
	VIII's divorce. Many religious activities were now viewed as religious	23	Reformation	The change from Catholicism to Protestantism.
	crimes. The Gunpowder Plot increased fears around religious conflict in	24	Heretics	People who had a different religion to the monarch.
	England. The English Civil Wars also led to great instability. The C17th	25	Treason	To challenge the authority of the monarch and their authority as Head of the Church of England.
	saw persecution for witchcraft and during this period, the ruling elite	26	Burned at the stake	Tied to a wooden post and a fire lit beneath the victim.
	continued to use the law to protect their own position in society.	27	Middle Way	The attempt of Elizabeth I to create a Protestant Church that was not too challenging to Catholic traditions.
	Punishment became harsher and more varied.	28	Act of Uniformity	Everyone had to go to church on Sundays and holy days or pay a fine.
Key e	vents	29	Recant	Make a public statement that you have changed your religious beliefs.
2	1509-47 – Reign of Henry VIII.	30	Excommunicate	Eject from the Catholic Church.
3	1547-53 – Reign of Edward VI.	31	Fox's Book of Martyrs	Published I 1563, it describes the persecution of Protestants by Catholics under the reign of Bloody Mary (Mary I).
4	1547 – Vagrancy Act – An able bodied vagabond who was without work	32	Vagabonds/Vagrants	Unemployed and homeless people who left their village or town in search of work.
	for more than 3 days was to be branded with the letter V and sold as a	33	Deserving Poor	Elderly and disabled.
-	slave for 2 years.	34	Undeserving Poor	Those fit to work but did not.
5	1553-58 – Reign of Mary I.	35	Poor Relief	Financial assistance for the poorest members of society.
6	1558-1603 – Reign of Elizabeth I.	36	Enclosed	Fenced off for the exclusive use of the landowner.
7	1597 – Act for the Relief of the Poor – included harsh punishments to	37	Import Duties	Taxes payable on goods imported into the country.
	act as a deterrent to vagrants.	38	Smuggling	Sneaking good into the country to avoid import duties.
8	1601 - Poor Laws aimed to make all local parishes provide poor relief for	39	Decriminalise	Make an activity legal, or no longer a crime.
	anybody who was not physically fit to work.	40	Puritan	A radical Protestant.
9	1603-25 – Reign of James I.	41	Protectorate	The period that Oliver Cromwell was in charge.
10	1605 – Gunpowder Plot.	42	Night watchman	Early form of policing. Worked for the town constable who was employed by the town
11	1606 – Popish Recusants Act – forced Catholics to take an oath of	43	Thief takers	Paid a reward for catching a criminal and delivering them to the law.
12	allegiance to the English Crown.	44	Jonathan Wild	An infamous thief taker in London who secretly led a gang of thieves who claimed rewards when
12	1633-1638 – Rule of Oliver Cromwell as Lord Protector.			they handled stolen goods.
13	1671 - Galile Act – poaching was niegal.	45	Bridewell Prison	Built in 1556 and used to punish poor people who had broken the law.
L4 Kov C	anconto	46	Capital Crime	A crime that is punished by the death penalty.
Key C	Delicious changes in the C1Cth lad to new and changing definitions of	47	Pardon	When a person is let off punishment for a crime of which they have been convicted.
15	religious changes in the C16th led to new and changing definitions of	48	Bloody Code	Harsh attitude to law making. Many crimes were punishable by death.
	criminal activity.	49	Transportation	Being sent away from England to serve a period of punishment in a colony abroad.
16	and a suspicion of the near but he upper classes	50	Colonies	New settlements in foreign lands – often taken by force from the original inhabitants.
47	and a suspicion of the poor by the upper classes.	51	Plead for belly	Pregnant women condemned to death asked to be allowed to live until the baby was born.
17	Poaching and smuggling were seen to be social crimes .	52	Rehabilitation	Help someone return to normal life and society after they have committed a crime.
18	The population grew dramatically, from 2.5 million in 1500 to 5 or 6	53	Conspirator	Someone who is involved in a conspiracy – a secret plan to do something illegal.
	million by 1700. Urban areas grew too.	54	Pact	A formal agreement.
19	Between 1500 and 1/00, law enforcement was similar to how it had	55	Demonologie	Book published in 1597 by James I about the nature of Hell and witches.
	been in the Middle Ages. The community were still expected to take a	56	Superstition	Belief based on old ideas about magic rather than reason or science.
	leading role in stopping and finding suspects.	57	Matthew Hopkins	A self proclaimed Witchfinder General who hunted down witches in the East of England.
20	Growth of towns and rising crime rates meant that a new co-ordinated	58	Familiars	Animals who worked for the devil and witches.
<u> </u>	approach to enforcing law was needed.	59	Swimming Test	Involved drowning the accused. The guilty would float and the innocent would sink.
21	Catholic persecution increased after the Gunpowder Plot of 1605.	60	Enlightenment	Philosophical movement of the C17th and C18th that focused on the use of reason to question and analyse ideas that were previously taken for granted.
		61	Royal Society	Established in London in 1660 and brought together thinkers and scientists from a wide range of academic fields.

YEAR 9 - T2- HISTORY- CRIME, PUNISHMENT AND LAW ENFORCEMENT IN INDUSTRIAL AGE ENGLAND 1700-1900

1	This period saw rapid population growth and increased urbanisation meant more
	opportunities for crime. There was significant poverty in the cities and enforcing crime
	became more problematic. There was a change in attitudes too – prisons were for
	reforming criminals and not just punishing them. Important individuals in this time
	included John Howard, a prison reformer, and Robert Peel, the founder of the
	Metropolitan Police.
Key e	vents
2	1690 – Excise duty extended to salt, leather and soap and mounted customs officers
	introduced.
3	1716 – Last known execution for witchcraft.
4	1723 – Black Act makes poaching game or damaging forest a capital crime.
5	1735 – Witchcraft Act decriminalised witchcraft.
6	1748 – Fielding brothers set up the Bow Street Runners.
7	1778 – Transportation to Australia introduced.
8	1789 – French Revolution.
9	1810- 222 crimes are capital offences.
10	1816 - The first national prison opens at Milbank, London to hold convicts awaiting transportation
11	1823 – Black Act renealed
12	1829- Metropolitan Police Act
12	1832 – 60 crimes are capital offences
13	1835 – Gaols Act introduces inspection of prisons
14	1803 – Bentonville prison set up on the site of old Milbank prison
15	1942 – Pentonvine prison set up on the site of old windark prison.
17	1856 – Police Act makes it compulsory for all towns and counties to set up a police force
18	1868 – Public execution ended.
19	1869 – National Crime Records established.
20	1877 – All prisons are brought under government authority.
21	1878 – Criminal Investigations Department set up.
22	1898 – Prison Act emphasises rehabilitation and reform of prisoners.
23	1902 – Holloway Prison for women opens/ first conviction in court using fingerprint evidence
Kev C	oncepts
24	Smuggling and highway robbery became less common in the C19th.
25	There were increasingly harsh and unpopular laws against poaching but they were repealed in the 1820's.
26	The growth of the prison system meant that an alternative punishment to transportation was available.
27	Early C18th law enforcement continued to use similar methods to the early modern period but the establishment of the Bow Street Runners was a very important
20	The government was concerned with nuniching wrongdoing and deterring others from
۷Ō	crime by oncuring conditions were sufficiently barsh

Key Wor	Key Words				
29	Smugglers	People who brought goods into the country and sold them on, without paying duties.			
30	Hawkhurst Gang	A large smuggler gang which operated in the South East of England from 1735 to 1749.			
31	William Pitt	Prime Minister who lowered import duties and who helped to reduce smuggling.			
32	Highway Robbery	Threatening and attacking travellers and forcing them to hand over valuable possessions.			
33	Turnpikes	Roads with a toll gate.			
34	Jack Shepherd/ Dick Turpin	Famous highwaymen.			
35	Tolpuddle Martyrs	Men from the village of Tolpuddle in Dorset who formed an early trade union.			
36	Martyr	A person who suffers for their beliefs, and often is admired for it.			
37	George Loveless	Leader of the Tolpuddle Martyrs.			
38	Trade Union	An organisation that represents workers to protect their rights.			
39	Transportation	Criminals were sent to America and later Australia as punishment for their crimes.			
40	Home Secretary	The government minister with responsibility for law and order.			
41	Hulk	Disused ships used as floating prisons just offshore.			
42	Inhumane	Cruel, without compassion.			
43	The Tyburn Tree	The most famous place for public executions. The tree could hang 24 people at once.			
44	Treadwheel	A common form of hard labour where the prisoner walked up the wheel for 10 minutes at a time with a 5 minute break before the next stint.			
45	John Howard	Campaigner for prison reformer.			
46	Elizabeth Fry	Campaigner for prison reformer.			
47	Humanitarianism	A school of thinking based on the principle that all humans are equal and inhumane treatment of other human beings should be challenged.			
48	Bow Street Runners	A crime fighting team, established in London, in 1748, by the Chief Magistrate, Henry Fielding. By 1785, they were officially paid by the government.			
49	Metropolitan Police Act	Gave London a uniformed police force. Set up by Home Secretary, Robert Peel.			
50	Prototype	A new idea or design that is tried out before more versions are made.			
51	Separate system	Prisoners were kept apart as much as possible.			
52	Pentonville Prison	Designed as a model prison by Joshua Jebb.			
53	Psychosis	A confused state where sufferers have hallucinations and delusions – seeing and imagining things that are not really there.			
54	Hard labour, hard fare and hard board	Physically demanding work, boring and bland diet and wooden board beds.			
55	Robert Peel	Home Secretary responsible for bringing in a wide range of changes to criminal law and for reforming prisons. Some historians call him the 'father of modern policing'.			
56	Penal	Involving punishments.			

BOX 1: Key words.

Afterlife – Life after death; the belief that existence continues after physical death. **Euthanasia** – Greek for 'a good death'. Sometimes known as 'mercy killing'. Killing or permitting the death of a seriously ill person.

Evolution – The process by which different living creatures have developed from earlier less complex forms during the history of the earth.

Abortion – When a pregnancy is ended so that it does not result in the birth of a child.

Quality of life – The extent to which life is meaningful and pleasurable.

Sanctity of life – The belief that life is precious, or sacred. For many religious believers, only human life holds this special status.

Bioethics - the process of deciding what is good and acceptable in medicine.

Situation ethics – judging the rightness or wrongness of an act on a case-by-case basis. Basing moral decision-making on the most loving thing.

Hospice – A place where those with terminal illness go to die with dignity. Palliative care – focuses on relieving pain and suffering.

Purgatory – A Catholic place of waiting to have sins forgiven before entering heaven.

BOX 3: The sanctity of life

Most people believe to have **life is special** but religious people believe this because it is God's gift. This belief has an impact on issues of **bioethics** such as **abortion** and **euthanasia**.

Christians believe God is involved in His creation and has made everyone unique. He made humankind in His own image which means all life is sacred. Only G-d should take life away. Quakers oppose the death penalty and war. God chooses when life begins. Catholics disagree with IVF and contraception.

Humanists argue there is no soul or afterlife as this is the only life we get. Therefore life is special and its purpose is to make us and others happy.

The quality of life

Some argue this is more important than the sanctity of life. If we are free from pain and can live in freedom and dignity then we have a good quality of life. If pain outweighs pleasure, then we are have a poor quality of life. Measuring our quality of life is difficult as we all experience different tolerance to pain and pleasure. Government look at living conditions, health, education, the economy and human rights to determine the quality of life. This belief impacts medical ethics where some argue if the quality of life has deteriorated then someone should be allowed to die (euthanasia).

BOX 2: The scientific origins of the world

Charles Darwin in the 1800s explained how living creatures have evolved through a process of gradual change over millions of years.

Natural selection was observed on the Galapagos Islands where finches (birds) had different shaped beaks on different islands to suit the environment and eat food. These characteristics happened by chance but helped them survive and pass on these traits to their offspring. **'The survival of the fittest.'** Over time, this process led to new species of animals. It is how humans evolved.

Theory of the Expanding Universe Lemaitre argues that the universe is expanding outwards and possibly into infinity. Lemaitre also argues that time and space began 15 billion years ago from a singularity which was infinitely hot and dense and expanded causing sub-atomic particles and atoms to appear. He referred to this argument as hypothesis of the 'primeval atom' or the 'cosmic Egg'. Stars and planets were formed, including Earth.

BOX 4: Abortion

Life begins at different points for people. Some argue it is at **conception** (when the sperm meets the egg). Other when the baby can be felt in the womb. Others it's when the nervous system and organs develop. At **24 weeks** the baby has viability and can survive if born. This is the **UK legal limit** for an abortion where 2 doctors must agree. For some it is at birth. **Pro-life** people believe abortion is always wrong as the foetus has a right to life. UK law however does not recognize an unborn child as a person. **Pro-choice** people believe a women should have a right to choose what happens to her body.

Catholics do not allow abortions due to the sanctity of life. Life begins at conception. It is murder and against the 10 Commandments.

Church of England opposes abortion for social reasons but not if the mother's life is in danger, or it affects the quality of her life (e.g rape).

Humanists look for the least amount of harm to be brought to all concerned. There is not one view, but many are liberal and pro-choice.

YEAR 9 - T2- RELIGIOUS EDUCATION- MATTERS OF LIFE AND DEATH

LEARNING - LOVING - LIVING

BOX 5: Euthanasia

The four types of euthanasia: Voluntary (asks to die) Active (tries to end their life) Passive (treatment is removed) Involuntary (forced death) Usually the poor quality of life and suffer from incurable degenerative diseases is the reason someone may want to end their life. Euthanasia is illegal in the UK but legal in countries like Switzerland where the Dignitas clinic exists.

Christians mostly disagree stating the **sanctity of life** argument or see it as murder/ going against the 10 Commandments and also believe there is purpose in suffering. Many Christians see **Hospices** as an alternative. **Liberal Christians** might agree to life support being turned off or withholding treatment as it is the most loving thing (**situation ethics**).

Humanists support legalising **voluntary euthanasia** and not just for the terminally ill. People should be able to die with dignity and when faced with a poor **quality of life**.

BOX 7: Heaven and Hell

For **Christians**, heaven is to be in God's presence. **Evangelicals** argue it is a real place. **Liberal Christians** say heaven is symbolic. Heaven is believe to be a reminder there are consequences to actions and thoughts.

For **Christians** hell is to be in constant torment cut off from all things good and loving. **Evangelicals** argue it is a real place. **Liberal Christians** say hell is symbolic. A reminder there are consequences to actions and thoughts.

The **Roman Catholic Church** teaches that after death there is a state of **Purgatory**. This is a place where some people who have sinned are purified in a 'cleansing fire', after which they are accepted into Heaven.

Humanists say there is no heaven or hell, the dead live on through the memories of the living.

BOX 6: Life after Death

Christians believe in resurrection and everlasting life. Jesus modelled what would happen to our mortal bodies by rising from the dead. On **Judgement Day** God will decide who enters paradise and who doesn't. **Dualists** believe the body will decay upon death and the soul, which is immortal, will be reunited with God in heaven. **Evangelicals** argue we will have a bodily resurrection like Jesus. St Paul says it will be a spiritual body.

The Parable of the Sheep and Goats reveals that Jesus will separate those who followed Him (sheep) from those who rejected Him (goats).

Humanists say we can reflect on our own lives. There is nothing after death. We should live morally for ourselves and others, not God.

BOX 8: Sources of Authority

"I am the resurrection and the life; he who believes in me will live, even if he dies". -John 11:25

"I believe in the resurrection of the body and the life everlasting." Apostles' Creed

"Before I formed you in the womb I knew you" - Jeremiah 1:5

"Don't you know that your body is the temple of the Holy Spirit"-1 Corinthians 6:19

"You shall not kill" 10 Commandments - Exodus 20:13

"I revere the sanctity of life – but not at any cost" - Archbishop Desmond Tutu

"Why keep anyone alive when all the dignity, beauty and meaning of life had vanished... and when we should have been punished by the state if we had kept alive an animal in similar conditions" Dr. Leslie Weatherhead leader of the Methodist Church

" We need to provide better care for the dying rather than kill them off 'early." Methodist Conference 1974

YEAR 9 - T2- PHYSICAL EDUCATION— STRIKING AND FIELDING

- Striking and fielding includes; tennis, cricket, rounders, softball (games where you are hitting (striking) the ball).
- Fielding is the role of the team out in the field trying to stop the striker / runner scoring points by getting them out.
- This varies among different sports but essentially they are 'stumped out'.

Tennis 1:

- A game played on a rectangular court either singles or doubles.
- Players stand on opposite sides of a net and use a racket to hit a ball back and forth to each other.
- Maximum of one bounce after it has been hit by their opponent to return the ball over the net and within the boundaries of the court if a player fails to do any of these three things, the opponent wins a point.
- Game set match.

<u>Tennis 2</u>: A **forehand** in tennis is a simple way to return the ball. It is played on your **strong side**, standing side on to the ball and the racket swings back to front **transferring your weight** at the same time.

<u>Tennis 3</u>: A **backhand** in tennis is more technical than a forehand and is played on your weaker side. You should swing the racket to your weak side, make connection with the ball and the racket comes back across the body.

Cricket:

- The aim of cricket is simple score more than the opposition.
- Two teams, both with 11 players, take it in turns to bat and bowl.
- When one team is batting, they try and score as many runs as they can by hitting the ball around an oval field.
- The other team must get them out by bowling the ball overarm at the stumps, which are at either end of a 22yard area called a wicket.
- The bowling team can get the batsmen out by hitting the stumps or catching the ball.
- Once the batting team is all out, the teams swap over and they then become the bowling side.

Rounders:

- Two teams with a maximum of 15 players and a minimum of 6 with no more than 9 on the field at one time.
- The ball must be bowled below the shoulder but above the knee.
- A rounder is scored if 4th post is reached and half a rounder is scored if 2nd base is reached.
- You can get the batter out by catching them out or stumping the post they're running to.
- <u>Softball</u> consists of a pitcher, catcher, four infielders, and three outfielders.
- A strike is called when the batter swings at a pitch whether it is deemed to be in the strike zone or not.

Catching skills:

- Hands should be ready at chest height in a *bucket*.
- Eye on the ball.
- Step back as you receive and keep the body balanced.

Fielding is an important part of all striking and **fielding** games. Effective fielding is going to prevent the batting / striking team from scoring points by getting players *out*.

Good fielders need to be able to throw and catch well and also stop the ball not always with their hands (long and short barrier).

The Long Barrier

The **long barrier** is used in all fielding games if the ball is coming to you along the ground i.e rolling. You kneel down, making a barrier from your leg and foot, cup your hands together, keeping your eye on the ball.

Throwing technique:

- Stand side on, weight on back foot, pull strong arm back, above shoulder height, other arm pointing to target.
- Transfer weight from back foot, push arm forward, pivot hips to face direction of throw, rotate shoulder / arm towards target.
- Flick wrist at point of release (at ear) and follow through.

Questions:

- 1. Name four sports that are striking and fielding?
- 2. Explain the long barrier technique in your own words.
- 3. Explain the throwing technique above in your own words.
- 4. How do you *get people out* in striking and fielding games?
- 5. How do you score points in rounders and cricket?
- 6. Name 2 movements in tennis.

Environmental Issues

- Negative Impacts
 - Energy Consumption
 - \circ E-Waste and health \rightarrow
- Recycling and Sustainability
- Positive Impacts
 - o Climate monitoring
 - Teleworking
 - o Reduced printing

Privacy and Security

- Location monitoring
- Mobile Phone providers
- Surveillance Cameras
- Encrypted messaging
- Data Protection Act
- Cybersecurity
 - o Threats and Defences

Ethical Impact

- Inclusion / Accessibility
- The Digital Divide
- Professionalism
- Codes of Conduct

Challenge:

Use Quizlet study sets 06

Legislation

- Copyrights, Designs & Patents Act 1988
 - Intellectual Property
 - Hardware patents
- Computer Misuse Act

 Hacking / viruses
 - Data Protection Act 1998
 - Protects Personal data
 - o 8 principles
 - Privacy, accuracy, security
- Software Licensing
 - Volume Licensing
 - Personal use licensing

Types of Software

- Proprietary
 - e.g. Windows, iOS and MacOS
 - Microsoft Office, Adobe Photoshop
- Open Source
 - $\circ~$ e.g. Linux and Android
 - LibreOffice, The GIMP
- Cost versus support model

Emerging Technologies

- Robotics, AI
- Internet of Things. Quantum Computing.

1	Multi-roling	Performers play more than one character which can be differentiated by changes in movement, posture, gesture, body language, facial expression and voice.	8	Placards	Often used to give the audience additional information to deepen their understanding and offer them extra information about what they are seeing.
2	Split roles:	Where more than one performer plays the same character eg four different actors playing Macbeth to show different sides to his characters.	9	Singing and dancing	Used to make it clear to the audience that what they are watching is not real life- the style of the singing and dancing should not be polished as in the West End.
3	Set, costume, props and lighting	Simple in Brechtian theatre-obvious and functional.	10	Spas	Meaning 'FUN'- Brecht wanted audiences to think about what they were watching and he realised that comedy and satire was an effective way to do this.
4	Narration	To tell the audience what is going to happen or give scenes a title. Stops the audience feeling emotional about the action if they know what is going to happen.	11	Montage	Using images and sounds to distort or challenge conventional views of events, issues or situations.
5	Direct Address	This breaks the fourth wall and has the actors speaking directly to the audience so it stops the illusion of reality.	12	Satire	Uses humour and sarcasm to expose and mock somebody else's failings.
6	Coming out of character	Where a performer comes out of a character or role in the middle of a scene to explain what is happening or how they are feeling.	13	Gestus	Clearly defined gesture or movement performed by the character to demonstrate the essence of the character.
7	Speaking the stage directions	Used in rehearsals.	14	Epic theatre	About an event-tries to get the audience to change their mind about something and/or take action about a social injustice they see.

YEAR 9 - T2- MUSIC TECHNOLOGY- PERFORMING/PRACTICING

KEYWORDS

1- Performing: to play an instrument (including voice) to an audience.

2- Practice: To do something repeatedly in order to acquire or polish a skill.

3- Rehearsal: to prepare for a performance, typically as part of a group.

4- Maintenance: activities required or undertaken to conserve the original condition of an item.

5- Health & safety: regulations or procedures intended to prevent accident or injury.

5- technical ability: precise control; a skillful or efficient way of doing something.

5- dexterity: readiness and gracein a physical	sical activity; skill and ease in using
the hands/voice manually.	

5- stamina: the ability or strength to keep doing something for a long time.

5- control: ability to manage an instrument; remaining in control of an instrument or piece.

Specific Instrumental Techniques to be learnt, developed & mastered:

DRUMS Rudiments

Rolls – single stroke, multiple bounce, double stroke Diddles – single paradiddle, double, triple, paradiddle-diddle Flams; Drags; Triplets

Fills

GUITAR

Scales – major, minor, pentatonic Chords – power, major, minor Arpeggios

Riffs

PIANO

Scales – major, minor, pentatonic, modal Chords/Arpeggios – major, minor Single-handed or double-handed

All instruments

Improvisation & Interpretation

Sight-reading

Performing solo

Performing as a band

PRACTICE TECHNIQUES

WARM UP

- Technical exercises: scales, arpeggios, strokes, etc.
- Understand the music identify as much theory as possible look for keys, scales, chords, patterns, rhythms).

SET A TARGET

- Know what you want to achieve in the session
- Be realistic

RECORD YOURSELF

Compare this with what the piece **should** sound like and identify the problem areas

IDENTIFY THE PROBLEM AREAS

Practice the parts you can't play (not the parts you can) first:

- Use a metronome
- Play it slowly, then speed it up
- Try the part in different rhythms so that you get the pitches accurate
- Aim to play it correctly **three time in a row** if you make a mistake, start again!

BREAK IT DOWN

- Play the piece section by section: split the piece into **small** parts; practice each one until right; combine each section as you work through the piece
- Don't just play through the whole piece repeatedly, be focused
- Try to memorise sections

IF YOU CAN PLAY IT - ADD EXPRESSION!

- Add dynamics
- Play with the tempo
- Think about articulation & phrasing

PLAY ALONG WITH A RECORDING/ANOTHER PERSON REWARD YOURSELF

YEAR 9 - TZ- MUSIC TECHNOLOGY- COMPOSING PARTS

KEYWORDS

1- Compose: an original musical creation.

2- Style: The style or genre of music (Blues, Hip-Hop, Rock are 3 different musical styles).

3- Rhythm Track: a regular repeated pattern, often heard on drums.

4- Bassline: the lowest frequency notes in the composition.

5- Harmonic Progression: the chord changes that move to form the harmonic characteristic of the composition.

6- Melody: short riffs and musical ideas combined to create a tune

7- Lyrics: written words that are sung, spoken or otherwise performed with the composition.

8- Chord: 2 or more notes played simultaneously.

9- Conjunct: moving by step.

10- Phrase: a musical sentence, usually in 2, 4 or 8 bars.

11- Structure: how a piece is organized (Verse-chorus, ABA, strophic are 3 different types of song structure).

KEY QUESTIONS

What musical style are you composing?

What are the key music features of your chosen style?

What makes a successful composition in this style?

When composing a piece, all the parts should match and fit together harmoniously.

In order to do this, all the parts should relate to set of chords arranged together in a strong progression.

Different songs use different amounts of chords and chord progressions:

- Two-chord songs
- Three chords across 2-bars
- · 4-bar patterns
- 8-bar patterns

The strongest chord progressions focus around the **tonic** (I), **subdominant** (IV) and **dominant** (V) chords.

You should avoid using the median (iii) and leading note (vii).

Listen to as many songs in your style and try to answer the analysis questions.

The more you listen to and identify the different features of all the parts, the better your composition will be!

LEARNING - LOVING - LIVING

<u>CHECKLIST (3+)</u>

- 1. Rhythm Track drums or percussion?
- 2. Bass line repetitive or melodic riff?
- 3. Harmonic Progression how many chords? Will they change for different sections? Use the progression map for good progressions.
- Melody short motifs/riffs in phrases – structure.
- 5. Lyrics sung or bars?

YEAR 9 - T2- ART — COLOUR AND PATTERN

Keyword	Description
1. Pattern	A design that is created by repeating lines, shapes, tones or colours. The design used to create a pattern is often referred to as a motif. Motifs can be simple shapes or complex arrangements
2. Weight	The thickness of a mark or brushstroke
3. To Block in	to BLOCK IN: to fill in an empty area in an image with a certain colour before adding fine details such as shadows and highlights.
4. Composition	how objects or figures are arranged in the frame of an image
5. Contemporary	Living or occurring at the same time.
6. Negative Space	When drawing shapes, you must consider the size and position as well as the shape of the area around it. The shapes created in the spaces between shapes are referred to as negative space .
7. Geometric	characterized by or decorated with regular lines and shapes. "a geometric pattern"

B. Presenting work

B1: Primary Source: Working from a first hand resource- something that is actually in front of you

B2: Secondary Source: Working from a second hand resource, such as a photograph.

C. Colour Harmony

12. Colour Harmonies are arrangements of colours which create a pleasing visual effect when pared together

Primary Sources allow you to:

B3: Examine your subject from different angles and change your viewpoint.

LEARNING - LOVING - LIVING

B4: Experience objects, images, people or places in different lighting conditions and compositions.
B5: Look at things close up or from further away.
B6: Take your own reference photographs from angles and in conditions that reflect your interests.
B7: Revisit your source material during your development process.

Secondary Sources cause problems such as:

B8: Not being able to draw from life will limit your decisions on viewpoint, composition and lighting. B9: You will be relying on images generated by others based on their creative choices rather than your own.

B10: You may find it very difficult to carry out effective development like changing compositional arrangements.

C1. Complementary colours are opposite each other on the colour wheel

C2. Analogous colours are directly next to each other on the colour wheel.

C3. A triadic colour scheme uses colours that are evenly spaced around the colour wheel C4. The split-complementary colour scheme is a variation of the complementary colour scheme. C5. Tetradic (rectangle) colour scheme uses two pairs of complementary colours.

YEAR 9 - TZ- FOOD TECHNOLOGY- FACTORS AFFECTING FOOD CHOICE

Poligion	How each religion relates to food				
Keigion		Ethical and moral factors			
1. Sikhism	 Many Sikhs are vegetarians Sikhism teaches that its followers should only eat what they need to, and should avoid overindulging. 	1. Animal welfare	How well animals are reared and looked after.		
2. Christianity	 There are no strict rules about food During lent Christians will give up certain foods or drink for 40 days 	2. Fairtrade	Making sure farmers in developing countries are paid fairly for their crops and their workers live in good conditions.		
3. Hinduism	 and nights. Many are vegetarians but some try to avoid certain vegetables as they are considered barmful such as garlie opions and 	3. Intensive farming	Use of pesticides are used. Effects on the environment. and conditions in which animals, birds and fish are kept/using up lots of land to grown crops and animal feed/using up natural resources such as water.		
	 The meat Hindus eat must be slaughtered using a quick, painless method called – Jhatka. Cours are considered to be speed, on Uindus are not allowed to be speed. 	4. GM foods (Genetically Modified)	Effects on the environment/ whether or not human should alter food in this way/it may affect people who have food allergies.		
	eat beef.	5. Local produce	Few food miles, supports local producers, foods purchased in season and can be cheaper.		
4. Judaism	 Jewish food must be Kosher which fits in with their law – Kashrut. Kosher means – fit for consumption Kosher animals are animals with split hooves and chew cud – cows 	6. Organic	ic Grown without the use of fertilisers, virtually no pesticides used. Better for the environment and soil.		
	 These animals must be slaughtered using quick, painless methods which allow the blood to drain afterwards – blood is considered non-kosher Jews are not allowed to eat pig, rabbit, hare, camel and many more. Dairy and meats can not be cooked together or eaten together as a mixture. 	Vegetarians There are differ different reasor 1. Religion 2. Ethical 3. Medica disease	rent types of vegetarians but all vegetarians avoid eating meat and fish for many ns; us beliefs such as Hindus, Muslims and Jews beliefs – some people objects to the cruelty of killing animals or animal welfare al reasons – cases of food poisoning, health scares such as BSE and Foot and Mouth e are linked to meat consumption		
5. Islam	 The Qur'an states that meat must be Halal – this is where lawful animals are slaughtered in a specific way while being blessed Muslims cannot eat pork or any pork product – like gelatine Bamadan is where Muslims fast between surrise and surset 	4. Dislike 5. Family 6. Enviror	of taste or texture influences, peer pressure or media pressure mental concerns – they can consider using land rearing animals wasteful		
6 Buddhism	All living beings are sacred, so many Buddhists are vegetarian or	Туре	Description		
o. Budunishi	 Most avoid alcohol Some Buddhists choose to fast from noon till sunrise the following 	1. Lacto vegetarian	Don't eat meat, poultry, fish or eggs but will eat dairy products		
	day	2. Lacto-ovo	Don't eat meat, poultry, fish but will eat eggs and dairy product		
7. Rastafarianism	 Many Rastafarians follow an I-tal diet (this means 'clean and natural') many diets are made up of fresh vegetables, some will eat fish (less then 30cm long) Many will not drink alcohol 	3. Vegan	Do not eat any food from animals including meat, fish, eggs, dairy products and honey from bees.		

LEARNING - LOVING - LIVING

The International System of Units (SI)

The International System of Units (SI) is based on the metric system.

The General Conference on Weights and Measures, the highest organ of the Metre Convention, determines the SI and defines its units.

The SI is based on seven base units: the second, metre, kilogram, ampere, degree kelvin, candela and mole. With their help, all other units can be derived.

Chemical Engineering			
Pharmaceu ticals	Mole - production of medicines Kilo - body mass to substance ratios Time - reaction times of substances		
Fossil Fuels	Kilo - weights in refining Kelvin - temperatures in mining and refining Mole - chemical processing, testing and sampling		
Food & Drinks	Mole - use of chemicals in production Kilo - nutritional information and breakdown, weights and ratios for food combinations Time - life span, reaction time to degradation		

Electrical & Elec	Electrical & Electronic Engineering			
Power Stations	Ampere - output of power Candela - output of light pollution Kelvin - temperatures in production to avoid explosions Metre - sizes of, building, cooling towers, chimneys			
Household Appliances	Second - run time of appliances Metre - standard sizing for homes Ampere - for standard home electricals Kelvin - for appliances involving heat; microwaves, ovens, tumble dryers.etc Candela - for appliances which emit light; oven, TV, extractor hoods etc			
Integrated Circuits	Ampere - current around the circuit Metre - dimensions of circuit			
Mechanical E	ngineering			
Hydraulics	Kilo - weight ratios for lift Metre - maneuverability and lifting distances, part sizes to fit in machinery			
Gears	Metre - sizes for fit in machine			
Pulleys	Kilo - weight ratios for lift Metre - length of pulleys			
Communication	s Engineering			
Telephone	Time - speed of information transfer, calculating frequency Metre - distance informations travels			
Radio	Time - speed of information transfer, calculating frequency Metre - distance informations travels			
Fibre Optic	Candela - light emissions Metre - cable length, distances of cabling Time - speed of information transfer			

<u>YEAR 9 - T2- VCERT ENGINEERING- SI UNITS</u>

 Kilo - weight restrictions, force, setting the speed limit on the road in relation to stopping distances, total weight in relation to statistical risk of collapse or damage Metre - distance to span, height of supports, length bridge, setting the speed limit in relation to stopping distances. Candela - Light emissions and light pollution 	Biomedical Engin Prosthetics	neering Metre - measuring fo Kilo - body mass ratio	r individualised	fit
relation to stopping distances, total weight in relation to statistical risk of collapse or damage Metre - distance to span, height of supports, length bridge, setting the speed limit in relation to stopping distances. Candela - Light emissions and light pollution	Prosthetics	Metre - measuring fo Kilo - body mass ratio	r individualised	fit
speed limit in relation to stopping distances. Candela - Light emissions and light pollution			OS	
	Medical Devices	Kilo - body mass ratio Ampere - current of r	os machinery	
 Kilo - weight restrictions, force, setting the speed limit on the road in relation to stopping distances Metre - distance to span, height of supports, length bridge, setting the speed limit in relation to stopping distances. Candela - Light emissions and light pollution 	Radiotherapy	Ampere - current of r Candela - light emissi Kilo - body mass ratio Seconds - calculating	nachinery ons os exposure	
Kilo - weight restrictions, force, setting the speed limit on the road in	Software Engine	ering		
relation to stopping distances Metre - distance to span, height of supports, length bridge, setting the speed limit in relation to stopping distances. Candela - Light emissions and light pollution	Applications	Metre - in developmen for office programs Candela - graphics out	nt of CAD progra	ams, formatting
gineering	Systems	Second - run times		
 Ampere - electrical and electronic computer equipment Kelvin - calculate temperatures of the engine for cooling. Metre - acceleration, for the dimension of cars and stopping distances Mass - for the weight for stopping distances, maximum loads, power required to 		Ampere - calculating p Kelvin - calculating risk power to usage ratios Candela - screen bright	ower required a c of overheating tness	against usage, when high
pull / tow Time - acceleration, stopping distances, journey times	Computer Programming	Seconds - programmin	g and response	times
 Ampere - electrical and electronic computer equipment Kelvin - calculate temperatures of the engine for cooling. Metre - acceleration, for the dimension of motorcycle and stopping distances Mass - for the weight for stopping distances, maximum loads Time - acceleration, stopping distances, journey times 	"Base" q length (mass (time (t	uantities /) n)	Unit meter kilogram	Symbol m kg
Kelvin - calculate temperatures of the steam train functions. Metre - for the dimension of the train and stopping distances Mass - for the weight for stopping distances, maximum loads, power required to pull Time - stopping distances, journey times	electric tempera amount luminou	current(I) ature ("thermodynamic")(of substance(n) s intensity(Iv)	ampere T) kelvin mole candela	A K mol cd
	relation to stopping distances Metre - distance to span, height of supports, length bridge, setting the speed limit in relation to stopping distances. Candela - Light emissions and light pollution Kilo - weight restrictions, force, setting the speed limit on the road in relation to stopping distances Metre - distance to span, height of supports, length bridge, setting the speed limit in relation to stopping distances. Candela - Light emissions and light pollution incering Ampere - electrical and electronic computer equipment Kelvin - calculate temperatures of the engine for cooling. Metre - acceleration, for the dimension of cars and stopping distances Mass - for the weight for stopping distances, maximum loads, power required to pull / tow Time - acceleration, stopping distances, journey times Ampere - electrical and electronic computer equipment Kelvin - calculate temperatures of the engine for cooling. Metre - acceleration, stopping distances, journey times Kelvin - calculate temperatures of the engine for cooling. Metre - acceleration, stopping distances, journey times Kelvin - calculate temperatures of the steam train functions. Mass - for the weight for stopping distances, maximum loads Time - acceleration, stopping distances, journey times Kelvin - calculate temperatures of the steam train functions. Metre - for the dimension of the train and stopping distances Mass - for the weight for stopping distances, maximum loads, power required to pull Time - stopping distances, journey times	relation to stopping distances Metre - distance to span, height of supports, length bridge, setting the speed limit in relation to stopping distances. Candela - Light emissions and light pollution Kilo - weight restrictions, force, setting the speed limit on the road in relation to stopping distances Metre - distance to span, height of supports, length bridge, setting the speed limit in relation to stopping distances. Candela - Light emissions and light pollution incering Ampere - electrical and electronic computer equipment Kelvin - calculate temperatures of the engine for cooling. Metre - acceleration, stopping distances, journey times Ampere - electrical and electronic computer equipment Kelvin - calculate temperatures of the engine for cooling. Metre - acceleration, stopping distances, journey times Ampere - electrical and electronic computer equipment Kelvin - calculate temperatures of the engine for cooling. Metre - acceleration, stopping distances, journey times Ampere - electrical and electronic computer equipment Kelvin - calculate temperatures of the engine for cooling. Metre - acceleration, stopping distances, maximum loads Time - acceleration, stopping distances, maximum loads Time - acceleration, stopping distances, maximum loads Time - acceleration, stopping distances, maximum loads Mass - for the weight for stopping distances, maximum loads, power required to pull Time - stopping distances, journey times	relation to stopping distancesCandela - light ensisted of supports, length bridge, setting the speed limit in relation to stopping distances. Candela - Light emissions and light pollutionCandela - light emissions seconds - calculatingKilo - weight restrictions, force, setting the speed limit on the road in relation to stopping distancesSoftware EngineeringMetre - distance to span, height of supports, length bridge, setting the speed limit in relation to stopping distances. Candela - Light emissions and light pollutionMetre - in developmer for office programs Candela - graphics outAmpere - electrical and electronic computer equipment Kelvin - calculate temperatures of the engine for cooling. Metre - acceleration, for the dimension of cars and stopping distances Mass - for the weight for stopping distances, journey timesSeconds - programmingAmpere - electrical and electronic computer equipment Kelvin - calculate temperatures of the engine for cooling. Metre - acceleration, for the dimension of motorcycle and stopping distances Mass - for the weight for stopping distances, maximum loads Time - acceleration, stopping distances, journey timesComputer ProgrammingKelvin - calculate temperatures of the steam train functions. Metre - in the dimension of the train and stopping distances Mass - for the weight for stopping distances, maximum loads, power required to pull"Base" quantitiesKelvin - calculate temperatures of the steam train functions. Metre - for the dimension of the train and stopping distances Mass - for the weight for stopping distances, maximum loads, power required to pull"Ength (1) mass (m) time (t) electric current (1) uminous intensity (1/v)Kelvin - calculate temperatures of the st	relation to stopping distancesIndication of stopping distances.Metre - distance to span, height of supports, length bridge, setting the speed limit in relation to stopping distances.Candela - light emissions Seconds - calculating exposureKilo - weight restrictions, force, setting the speed limit on the road in relation to stopping distances.Software EngineeringMetre - distance to span, height of supports, length bridge, setting the speed limit in relation to stopping distances.Metre - in development of CAD progra for office programs Candela - light emissions and light pollutionAmpere - electrical and electronic computer equipment Kelvin - calculate temperatures of the engine for cooling. Metre - acceleration, for the dimension of cars and stopping distances Mass - for the weight for stopping distances, naximum loads Time - acceleration, stopping distances, naximum loads Time - acceleration, stopping distances, naximum loads Time - acceleration, stopping distances, maximum loads Time - acceleration of the train and stopping distances Mass - for the weight for stopping distances, maximum loads, power required to pull Time - stopping distances, journey timesComputer Metre - in development of the steam train functions. Metre - for the dimension of the train and stopping distances Mass - for the weight for stopping distances, maximum loads, power required to pull Time - stopping distances, journey

<u>YEAR 9 - T2- FRENCH - GRAMMAR</u>

	REGULAR <u>PRESENT TENSE</u>					
		-ER	-IR	-RE		
Je		е	is	S		
Τυ		es	is	S		
ll/Elle/On		е	it			
Nous	5	ons	issons	ons		
Vous	5	ez	issez	ez		
lls/Ell	es	ent	issent	ent		

TABLE 1 The Future of Regular Verbs

Subject	Ending	-er Verbs	-ir Verbs	-re Verbs
je	-ai	jouerai	finirai	rendrai
tu	-as	joueras	finiras	rendras
il/elle/on	-a	jouera	finira	rendra
nous	-ons	jouerons	finirons	rendrons
vous	-ez	jouerez	finirez	rendrez
ils/elles/on	-ont	joueront	finiront	rendront

TABLE 1	Forming	the Im	nerfect	Examples:	iouer.	finir.	rendre)	
INDLL I	1 Offining	the Tu	pencer	(LAampics.	jouci,	mm,	renurcj	

	je	tu	il, elle	nous	vous	ils, elles
<i>Nous</i> ending of the present tense				jou ons finiss ons rend ons		
Infinitive ending	-ais	-ais	-ait	-ions	-iez	-aient
	jouais	jouais	jouait	jouions	jouiez	jouaient
	finissais	finissais	finissait	finissions	finissiez	finissaient
	rendais	rendais	rendait	rendions	rendiez	rendaient

How to form the perfect tense with avoir

Once you have formed your past participle, you need to select the correct part of **avoir** you want to use.

1. You must choose a part of **avoir** in the **present** tense, eg:

English	Subject pronoun	Avoir – to have
I	j'	ai
you (informal)	tu	as
he/she/it (we)	il/elle/on	a
we	nous	avons
you (formal, plural)	vous	avez
they	ils/elles	ont

2. Now **add** your chosen **past participle**:

-er verb: parler	-ir verb: choisir	-re verb: vendre
parl é	choisi	vend u

j'ai + parlé = I spoke/I have spoken

nous avons + choisi = we chose/we have chosen

■ il a + vendu = he sold/he has sold

<u>YEAR 9 - T2- SPANISH - GRAMMAR</u>

TENSE	The present tense (what is happening now/what you usually do/facts)			The present continuous (ing - I aming / he ising)	The preto What happene the past ed / complete	erite d in / did / ed	The immediate future What you are GOING TO DO
RULE	Take AR/ER/IR off the infinitive to leave the stem and add the following endings:			Conjugate ESTAR (to be) + ando (AR) / iendo (ER- IR) to the stem	Take AR/ER/IR off the infinitive to leave the stem and add the following endings:		Conjugate IR (to go) + a + infinitive
Yo (I)	0	0	0	Estoy + ando/iendo (Estoy hablando / comiendo	é	í	Voy a (Voy a ir-I'm going to go)
Tú (you s inf)	as es	es		Estás + ando/iendo	aste	iste	Vas a
Él / Ella / Es / Usted (he/she/it/ you s f)	a e	е		Está + ando/iendo	ó	ió	Va a
Nosotros (we)	amos	emos	imos	Estamos + ando/iendo	amos imos		Vamos a
Vosotros (you pl inf)	áis ís	éis		Estáis + ando/iendo	asteis	isteis	Vais a
Ellos/Ellas/Ustede s (they / you pl f)	an en	en		Están + ando/iendo	aron	ieron	Van a

Trinity LEARNING - LOVING - LIVING

Referring to belonging(s)

my	mi
your	tu
his/her	su
your	su
our	nuestro
your	vuestro
their	su
your	su

Expressing negatives

nonada	notat all, nothing, not anything
no sé nada de eso	I don't know anything about that
nonunca	never (notever)
no voy nunca al cine	I never to go the cinema
nonadie	No-one (not anyone)
no conozco a nadie	I don't know anyone

Time words

ahora – now	Ayer-yesterday
antes – before	mañana – tomorrow
después – after	el año pasado – last year
hoy – today	el año que viene – next
hoy en día – nowadays	year
haceañosyears ago	

aquí – here allí - there